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Preface to the first edition 

I have given this book the title Elementary Atomic Structure to indicate 
that it is neither introductory nor advanced. It goes into the subject of 
atomic structure at an elementary level in somewhat more detail than is to 
be found in most of the large books on atomic physics. 

The book is an extended version of a set of lectures given to under­
graduates at Oxford. By the time they have reached their third year these 
undergraduates have had courses in atomic physics and in quantum 
mechanics. While I regard an introductory course in atomic physics as a 
prerequisite, I have tried to write the book in such a way that the earlier 
parts can be given a first readh1g concurrently with a study of formal 
quantum mechanics. 

The character of the book has been determined by two rather different 
considerations: a desire to instil a feeling for orders of magnitude, which I 
regret to say is too often lacking, and a desire for brevity. I have tried to 
use real examples, with numbers, to illustrate the application of quantum 
mechanics to atomic structure, and although these examples are ele­
mentary, I hope they show that real life is hedged about with approxima­
tions which one should attempt to understand. As for the second 
consideration--the book is meant to be short enough for the under­
graduate to feel that he will actually be able to read it, do the problems, 
and read other books in the time that he can afford to devote to a study of 
atomic structure. 

Of course, the shortness of the book has led to a selection of material. In 
particular, I have omitted the usual discussion of the width of lines in 
optical spectroscopy. I draw attention to this here, for I feel that nowadays 
a treatment of this topic should be combined with a discussion of measure­
ments in radio frequency spectroscopy and in modem methods of studying 
lifetimes and line shapes. Pressure broadening alone, for example, is a 
large subject of an advanced nature. In general I have avoided discussing 
the interaction of atoms with their environment, except for the interaction 
with applied electromagnetic fields. I have also regarded the Dirac 
equation as being beyond the scope of this book because at the present 
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Preface 

time a study of this topic marks the beginning of graduate work in most 
universities. It may be tantalizing for the better undergraduate that, as a 
result, I have had to quote the relativistic contributions to the fine structure 
of hydrogen in chapter 4, but perhaps he may be stimulated thereby to 
explore further. What I have attempted is an elementary discourse, pro­
ceeding as logically as possible, on the hierarchy of interactions which are 
of importance in describing the internal structure of atoms. It is natural to 
treat these interactions at each stage by perturbation theory. 

The problems are intended to be an important part of the book, com­
plementary to the main text. For example, in chapter 5 variational tech­
niques get a brief mention in the text, but in problem 5.2 the reader is 
asked to do the simplest variational calculation for himself and is given 
guidance on how to proceed. There is, of course, no substitute for doing 
problems. 

Apart from emphasizing at an early stage in the book that a prior or 
concurrent study of quantum mechanics is necessary, I have given a few 
references in footnotes to encourage wider reading of an immediate 
nature, but I have not thought it appropriate to aim at a large bibliography 
in a book of this size. The undergraduate will find adequate references in 
Atomic Spectra by H. Kuhn (Second Edition, Longmans, 1970), a book 
which I recommend also for its wealth of spectroscopic information. 

I hope that the book is sufficiently open-ended in its more advanced 
passages that the undergraduate, in progressing beyond the elementary 
level, will find himself prepared both to meet the challenge of the advanced 
texts such as The Theory of Atomic Spectra by E. U. Condon and G. H. 
Short ley (Cambridge University Press, 1951) and Quantum Theory of 
Atomic Structure by J. C. Slater (McGraw-Hill, 1960), and to welcome the 
use of modern techniques in the calculation of atomic structures when he 
first comes across them. 

Finally, I should like to thank those colleagues and pupils who have 
kindly agreed to take a look at parts of the manuscript. I should also like 
to express my gratitude to Dr Kuhn who first introduced me to the 
subject of atomic structure and who encouraged me in the study of it. 

G. K. WOODGATE 
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Preface to the second edition 

In this SI edition I have kept the general content of the book the same: 
it is neither much longer nor more advanced than the first edition. I have 
taken the opportunity, however, to correct all the errors I could find and 
to change those passages of the book which I had come to feel were either 
downright wrong or badly expressed. I have also added some more 
problems, particularly of the step-by-step kind which supplement the 
text, and which experience has shown to be the most fruitful for teaching 
purposes. 

Several people, amongst whom I mention Professor P. G. H. Sandars, 
Mr C. W. P. Palmer and Dr K. R. Lea, have given me helpful advice in the 
preparation of this new edition and I am grateful to them. I should like 
to thank especially Dr G. A. Brooker for taking the trouble to make a 
thorough criticism, based on his teaching experience, of parts of the book. 
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1. Introduction 

The structure of atoms is described successfully by the theory of quantum 
mechanics, and there is no doubt that in order to understand atomic 
structure one has to learn quantum mechanics. However, quantum 
mechanics came into being as the culmination of the development of 
earlier theories. Ofthese, Bohr's theory of hydrogen, based on Rutherford's 
nuclear atom and incorporating the ideas of Planck, was the famous 
starting point for atomic structure. Bohr's semi-classical theory was not 
general enough to describe more than the gross features of the simplest 
one-electron atom, but it provided a model of an atom which is easily 
visualized. Because of its vividness we tend to retain Bohr's picture in the 
back of the mind, although we reject the classical mechanistic parts of 
Bohr's model as a serious explanation of atomic structure. 

In this book we shall use elementary quantum mechanics to describe 
the structure of atoms. But we shall also come across other models which, 
for reasons to be explained later, have a greater claim to validity than 
Bohr's picture of a hydrogen atom. 

Bohr contributed much more than a mere semi-classical model. For the 
interpretation of atomic spectra the main point of his theory was the 
concept of stationary states of given energy, together with the frequency 
condition 

(1.1) 

which expresses the conservation of energy in a radiative transition of 
frequency V21 between stationary states of energies E1 and E2 (h is Planck's 
constant). We take these ideas very seriously but, in accepting the postu­
lates of quantum mechanics as having a validity much wider than their 
application to atomic structure, we find that Bohr's powerful ideas are 
included as special results of a more general theory. As always, such an 
attitude is aesthetically more satisfactory and scientifically more fruitful. 

1.1. Empirical aspects 

Theories of atomic structure grew up as attempts to explain the spectra of 
free atoms, that is the electromagnetic radiation emitted or absorbed by 

1 



Introduction 

atoms. Empirical analysis of the discrete frequencies found in the spectrum 
of an atom was facilitated by the Rydberg-Ritz combination principle 
which stated in effect that the frequencies v (or rather the wavenumbers 
v = vic where c is the speed of light) could be expressed as the differences 
of terms: 

(1.2) 

The consequence of this is that if vji and Vki occur in the spectrum, so 
might vkj where vkj = Vki - vji • By listing an array of frequencies and their 
differences one can assign, for a simple spectrum, a set of term values 
consistent with all the observed frequencies. For example, one would 
start by fixing the terms Tk and T j on the basis that the difference Vki - vji 

occurs for several i in the array. In complex spectra, consisting of hundreds 
of thousands of lines, such frequency differences often occur fortuitously: 
hence the need for high precision in the measurements. In fact many 
complex spectra, in particular those of the rare earths, have not been 
analysed. 

The term values Ti are written as positive numbers in units of cm - I, 
recently re-named the Kayser (K). The new name is more commonly 
found when the sub-unit milIi-Kayser is used: I mK = 10- 3 em-I. The 
energies Ei in eq. (1.1) are negative numbers, and there is an obvious 
relationship between eq. (1.1) and (1.2) provided 

Ti = -EJhc. (1.3) 

Thus term values are equivalent to binding energies whose zero is the 
ionization limit of the atom. Modern tables of energy levelst adopt a 
different ordering: the most negative energy level, the ground state, is 
taken as the zero of energy and the excited states have positive energies 
above the ground state up to a maximum at the ionization limit. 

In the simple spectra there are striking regularities. The frequencies 
appear in definite series and so, by the combination principle, the energy 
levels occur in series which can sometimes be expressed in simple analytical 
form. For example, for hydrogen-like atoms 

En = - hcRln2
, (1.4) 

and for alkali-like atoms 

(1.5) 

In these formulae R is a constant for a given atom, the index number n is a 
running integer for a given series, and b is a constant, not necessarily 

t For example: Atomic Energy Levels, Vols. I, II, and III by Charlotte E. Moore. National 
Bureau of Standards Circular Number 467. It cannot be too strongly emphasized that a feel 
for numbers, as derived from a study of such tables, is all-important as a basis for under­
standing what the theory is about. 
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1.2. Orders of magnitude 

integral, for a given series. These empirical formulae fit the spectra under 
conditions of low resolution. Equation (1.5) is less accurate than (1.4). 
The index number n is the principal quantum number of Bohr's theory and 
of quantum mechanics, although in some old energy-level diagrams which 
the reader may come across the ground state is labelled always by n = I 
which does not correspond to the labelling by principal quantum num­
ber.t Another label for distinguishing different series in empirical spectro­
scopy was the integer L (or I in single-electron spectra) which corresponds 
to the orbital angular momentum quantum number. It is denoted by the 
letter-code 

1=012345 .. . 
SPDFGH .. . 

In describing a transition between two energy levels, each labelled by nl, 
the convention is to write the lower level first: thus the (unresolved) 
yellow line of sodium is described by 3S~ 3P. This is the lowest-frequency 
member of the so-called principal series 3S~nP. 

Apart from frequency, another quantity which can be measured for 
spectral lines is their relative intensity. A line which might be expected to 
fit into an array of frequencies on the basis of the combination principle 
may actually be absent. A zero intensity (a forbidden transition) is 
interpreted theoretically in terms of a selection rule. 

It is the purpose of the theory to describe in a consistent manner the 
features of atomic structure by which the energy levels and intensities of 
transitions are explained quantitatively. In the course of the development 
of quantum mechanics for this purpose, many problems in the much wider 
field of pure physics and natural philosophy have been elucidated. There is 
also a sense in which the theory of atomic structure is an applied science: 
quantitative calculations of the behaviour of free atoms are required as a 
basis for the less well-defined fields (that is, fields in which the experiments 
are less easily controlled) of, for example, solid-state physics, plasma 
physics, and--an extreme case~astrophysics. 

1.2. Orders of magnitude 

We have outlined so far the empirical aspects of what is called the gross 
structure of the energy levels of an atom. This is to be described theoreti­
cally in terms of the largest interaction within an atom, that is by a 
potential energy representing the largest force. Under higher and higher 
resolution it is found that the energy levels split into sub-levels with pro­
gressively smaller separations. These splittings can be interpreted in terms 
of smaller and smaller interactions by approximation methods. The chief 

t For example, the principal quantum number describing the ground state of sodium is 
n = 3 and for caesium it is n = 6, but the index number used in the old type of diagram may 
nevertheless be n = I in both cases. 
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Introduction 

method employed is that of perturbation theory. It is really very fortunate 
that this can be done at all. 

It is of vital importance to have a clear quantitative picture of this 
hierarchy of splittings in order to have a feel for each interaction in its 
proper perspective. We shall now take an overall view of the orders of 
magnitude of the more important interactions. We shall find that we are 
dealing entirely with electromagnetic interactions. 

(a) The electrostatic interaction between a heavy nucleus of charge Ze 
and an electron of charge - e, mass mo, is of the formt - Ze2/4ncof 

where f is the distance between nucleus and electron. This term leads to an 
energy of the ground state of a hydrogen-like atom, E 1 , of order 

where h is Planck's constant divided by 2n. Alternatively, we can express 
E 1 in terms of a length: 

( 1.7) 

where ao = 4m;oh2/(moe2) ~ 0·5 x 1O-10m. The quantity ao is called 
the radius of the first Bohr orbit and is a measure of the size of atoms. It is 
also a measure of the domain in which quantum effects are dominant: for 
if an electron in a one-electron atom is regarded as being contained in a 
box of size ao/Z, with kinetic energy p2/2mO = Z2e2/8ncoao according to 
Bohr's semi-classical picture, then its mean momentum p is zero (other­
wise it would not be contained in the box) and the uncertainty in its 
momentum, defined by 

( 1.8) 
becomes 

( 1.9) 

By the Uncertainty Principle, the minimum uncertainty in the position 
of the electron is then ao/Z, the size of the box. This certainly represents 
quantum behaviour. 

Another important quantity corresponds semi-classically to the speed 
of the electron in the first Bohr orbit as a fraction of the speed of light: 

hZ 1 Ze2 
P1/(m Oc) = --- = ~ -- = Zrx (l.l 0) 

moeao 4nco he 

where rx = e2 /(4ncohe) ~ 1/137 is called the fine-structure constant. This 
dimensionless constant is a measure of the strength of electromagnetic 

t SI units are used throughout the book. See appendix E. 
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1.2 Orders of magnitude 

forces. Because of its magnitude, factors like (1 - Z211 2)1/2 which will 
occur as relativistic corrections can obviously be expanded binomially 
and will give good approximations in zeroth and first order. Also one 
observes that the electrostatic binding energy ( - E I) of the electron in a 
hydrogen-like atom is of the order of a factor Z2112 less than the rest 
energy of the electron: 

-EI = tZ 2
11

2moc2
• (1.11) 

(b) In many-electron atoms the electrostatic interaction with the 
nucleus is summed over all the electrons to contribute a term 

L ( - Ze2
/ 4rrcorJ 

in the potential energy. In addition there are electrostatic repulsion terms 
between each pair of electrons: 

L (e
2 /4rrcOr i)· 

i> j 

While the latter is in general too large to be treated as a small perturbation 
on the former, part of the mutual repulsion between electrons is directed 
away from the nucleus and cancels part of the nuclear attraction. One can 
then think of valence electrons moving in a net central field with their 
motion perturbed by the non-central part of the electrostatic forces. The 
central field is the dominant effect and leads to a classification of the gross 
structure of the energy levels of an atom by configurations. Different con­
figurations of a neutral atom have energy separations up to about 30,000 
cm ~ I, or about 4 eV. The residual non-central electrostatic interaction 
between electrons is a smaller effect and causes each configuration to 
consist of a number of terms whose energy separations may typically be 
of the order of 3,000 cm ~ 1. That is to say, in the central-field approxima­
tion each configuration really consists of several terms all of the same 
energy, but in the higher approximation of including the non-central 
interaction each term of a configuration has a different energy. When the 
approximation of treating the residual electrostatic interaction as a small 
perturbation is inadequate, one speaks of configuration mixing. For simple 
spectra the central-field approximation is a very good one because the 
disposition in spherically symmetrical shells of all but the one or two 
valence electrons leads to a great simplification. For complex spectra the 
approximation begins to break down. This discussion of the electrostatic 
interactions is the least tidy aspect of our attempt to describe an idealized 
hierarchy of splitting of energy levels. 

(c) The next interaction in order of magnitude is a relativistic one 
involving electron spin. The spin-orbit interaction is the largest relativistic 
effect and is responsible for fine structure. Each term splits into levels 
whose separations are of the order of 1-1,000 cm ~ 1, depending strongly 
on the atomic number Z. The interaction energy is of the form 

v = -Jl . Bel (l.12) 
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where Bel is the internal magnetic field at an electron whose intrinsic 
magnetic momentum is Jl. The size of Jl is of the order of a Bohr magneton : 

( 1.13) 

Bel for a hydrogen-like atom is of the order of (po/4rr)ZPBlr3 ~ (po/4rr) 
ZPB/(aoIZ)3, so the energy shift AE is 

-!l011~Z4 1 2 2 ( 1 Z
2
e

2
) 1 2 2 AE ~ -- --3 = 2 Z (X - -- ---- = -,Z (X Eqross. (1.14) 

4rr ao 4m;0 2ao 

Thus the fine structure is smaller than the gross structure by a factor 
Z2(X2. Expression (1.14) shows why (X is called the fine-structure constant. 
From (1.13) and the definition of ao we have also 

( 1.15) 

showing that atomic magnetic dipole moments are smaller than atomic 
electric dipole moments by a factor (XcI2. The range of fine structures, 
I-LOOOcm- 1

, quoted above corresponds to internal magnetic fields in 
the range 10-104 T. 

(d) The levels are split further into states by the application of a 
laboratory magnetic field. Blab' In practice Blab ~ 1 T. so the splitting 
is of the order of 

PB Blab ~ 1 cm - 1. 

This is called the Zeeman effect. 
(e) Whereas the nuclear electric charge, Ze, is responsible for the 

largest interaction in which the electrons take part, the other nuclear 
multipole moments-magnetic dipole, electric quadrupole, etc.-give rise 
to the smallest interaction so far to be considered. This is called hyperfine 
structure. For example, nuclear magnetic dipole moments are of the order 
of a nuclear magneton liN = eh/(2M) where M is the proton mass. Since 
M = 1,836 mo, PN = PB/l ,836 and the interaction of the nuclear magnetic 
moment with the magnetic field produced at the nucleus by the electrons 
is of the order of 

(1.16) 

Thus the magnetic hyperfine structure is less than the fine structure by a 
factor of about mol M. One could write the interaction (1.16) as - PBBN 
where BN is the magnetic field produced at the electrons by the nuclear 
magnetic moment. Then BN ~ (moIM)Be! ~ 1O- 2-IOT. Whereas the 
spectral lines corresponding to the gross energy differences lie in the 
visible and ultraviolet and are examined optically, hyperfine structure 
splittings are in the radiofrequency region and radiofrequency methods 
have naturally come to be used in their investigation, especially since the 
technical means of doing so have become available. 
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(f) We can see at once that the Zeeman effect of hyperfine structure, in 
which a laboratory field Blab (:S I T) is applied, gives a splitting of hyper­
fine structure levels which is not necessarily small compared with the 
hyperfine structure splitting itself: Blab t BN • 

In table 1.1 below we summarize the orders of magnitude of all these 
interactions in several systems of units, including an effective temperature 
unit defined by TK = hv/k, where k is Boltzmann's constant. 

Table 1.1. Summary of orders of magnitude 

Interaction Magnitude 

cm- 1 eV Hz K 

(a) Central electrostatic 30,000 4 10
15 43,000 

(b) Residual electrostatic 3,000 0-4 10 14 4,300 
(c) Fine structure 1-1,000 10- 4 -10- 1 3 x 10 1°_3 X 10

13 1'4-1,400 
(d) Zeeman effect of fine 

structure I 10- 4 3 X 1010 1·4 
(e) Hyperfine structure 10- 3-1 10- 7-10- 4 3 x 107-3 X 10 1o 1·4 x 10- 3-1'4 

Of course the scheme outline in table 1.1 is not always as clear-cut as 
we have made out. Sometimes there is much more overlapping of the 
categories than has been indicated. But as a starting point for the applica­
tion of the perturbation method the scheme is often realistic enough. In the 
rest of this book we shall be concerned with the interactions, one by one, 
mentioned in this survey. 

Problems 

1.1 In the table below are given eight of the wavenumbers vn for the 
transitions 3S-nP in sodium. Devise an extrapolation procedure to find 
the ionization limit of sodium with a precision justified by the data. 
Convert the result into Angstrom units and into electron volts. 

n V cm- 1 n V cm- 1 

7 38,541 11 40,383 
8 39,299 12 40,566 
9 39,795 13 40,706 

10 40,137 14 40,814 

1.2. Evaluate the ratio of the gravitational to the electrostatic force of 
attraction between a proton and an electron. 

1.3 For thermal equilibrium at temperature T an appropriate measure of 
energy is kTwhere k is Boltzmann's constant. Convert the following into 
unitsofK:! Rydberg; 103 cm- 1,! em-I, 1O-3cm -l;! eV. 

1.4. The 3P term of sodium lies approximately 17,000 cm- 1 above the 
ground term 3S. The relative statistical weights of the 3P and 3S terms are 

7 



Introduction 

g(3P)/.q(3S) = 6/2 = 3. If a bulb of sodium vapour is in thermal equili­
brium with a temperature bath at TK, at what temperature would 1 per 
cent of the atoms be in the 3P term? Assume that all other terms lie much 
higher than the 3P term. 

1.5 The ground level of an atom is split into two Zeeman states of equal 
statistical weight separated by 10,000 MHz. An assembly of such atoms is 
in thermal equilibrium at temperature TK. What is the fractional popu­
lation difference of the Zeeman states when T = 300K, 20K. 4K, ]'5K? 
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2. The hydrogen atom 
gross structure 

Hydrogen, with only one electron, is the simplest possible atomic system. 
Moreover, the central electrostatic interaction between electron and 
nucleus, which is the only interaction considered in this chapter, is repre­
sented by the potential energy V(r) = -Ze2j4neor. This Coulomb inter­
action is ofa special form with respect to its radial dependence (V(r) ex r- k 

where k = 1) and leads to special results which are by no means typical of 
atoms with one valence electron and a core of spherically symmetrical 
electron shells. The disadvantage of treating hydrogen first (as is done 
here and in most other textbooks) is that the student might be misled into 
thinking that the detailed results are typical of other atoms. This dis­
advantage is partly compensated by the fact that the problem can be 
solved exactly within the framework of the initial physical assumptions, 
and the solution exemplifies the methods of quantum mechanics. For this 
same reason, of course, hydrogen is one of the best testing grounds for the 
theory and much fundamental work has been done on it. The nature of, 
and necessity for, approximation methods becomes apparent later. 

In the next three sections we give, in outline only, a discussion of 
Schr6dinger's equation and of the postulates of wave mechanics in order 
to summarize the concepts which we shall need to use. The remarks in 
these sections are intended to serve as a reminder to the reader about what 
he should know of the elementary theory. If he feels that his background 
is inadequate at this stage he is urged to study concurrently a bookt on 
quantum mechanics, for we shall come to the point without much pre­
amble. 

2.1. The Schrodinger equation 

Let us take the classical equation of conservation of energy 

2 

E = L + Vex, y, z) 
2mo 

(2.1) 

t An attempt has been made to keep the notation consistent with that of R. H. Dicke and 
1. P. Wittke, Introduction to Quantum Mechanics, Addison-Wesley, 1960. 
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The hydrogen atom: gross structure 

for the motion of a particle of mass mo and momentum p moving in a 
potential V which is not an explicit function of time t, and make the 
replacements 

'Ii C £--+1 -at' 
p --+ -iii V. 

(2.2) 

If these differential operators are allowed to operate on a wave function 
p = p (x, y, z, t) we obtain a differential equation 

or 

where 

iii ap = _ ~ V Z P + VP, 
at 2mo 

iii ap = .YtP 
at 

(2.3) 

(2.4) 

is called the Hamiltonian (for a conservative system). Here .Yt is an 
operator representing the sum of the kinetic and potential energies. 

The operator relacements (2.2), together with the existence of a wave 
function P, may be regarded as the fundamental postulates of wave 
mechanics. 

The wave equation (2.3) is called Schrodinger's equation for the motion 
of a particle in a potential V(x, y, z). This equation is linear in P which 
is a complex wave amplitude. The generally accepted interpretation of P 
is that proposed by Born: if p' is the complex conjugate of P, p'p 
represents a probability density for finding the particle at the co-ordinates 
(x, y, z, t) as the result of a measurement of its position at time t. The 
linearity of Schrodinger's equation implies that if PI and P z are solutions 
of the equation then so is C1 PI + Cz P 2, where C1 and C2 are constants. 
This superposition principle is of vital importance because it gives rise to 
wave-mechanical interference which is the fundamental idea behind our 
understanding of quantum-mechanical phenomena. Indeed, other wave 
equations, notably Dirac's relativistic wave equation, are constructed in 
such a way as to retain this feature of linearity. 

There can be no pretence that the introduction of Schrodinger's equa­
tion given above is anything but mysterious. But then the initial postulates 
of a theory, by their nature, are not derived from anything else. One can 
only present them in the most plausible form and find justification for 
them in the validity of their application to physical problems. The classical 
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2.1. The Schrodinger equation 

form of the Hamiltonian, eq. (2.1), is still apparent in Schrodinger's 
equation, despite the disguise in operator form, eq. (2.2). We shall have 
occasion to specify particular problems by expressing the potential 
energy largely in classical terms. Thus we may still recognize in the solution 
of the problem certain classical features and we may be able to build a 
model, or classical mental picture, based on these features. But the other 
aspect of Schrodinger's equation, namely the postulation of a wave func­
tion, will have to be understood in a more abstract manner. In particular 
we shall have difficulty in visualizing the interference phenomena men­
tioned above except in a mathematical sense. 

lJ', the amplitude describing the motion of a quantum-mechanical 
'particle', is analogous to the amplitude, 1;, describing the motion of a 
wave, provided that we make use of the ideas of Einstein and de Broglie in 
transferring from the wave concept to the particle concept. For a plane 
wave, for example, of definite angular frequency ill and wave vector 
k ([k[ = 27[/1. where I. is the wavelength) 

r-wt) (2.5) 

With the replacements 

E = hill (Einstein) (2.6) 

and 

p = hk (de Broglie) (2.7) 

we arrive at the amplitude lJ' for a free particle of definite energy E and 
momentum p 

lJ' = lJ' 0 ei/h(p· r - EI). 

The operations ih (a/at) and - ihV give 

'h a 
1 at lJ' = E lJ' 

and 

- ih VlJ' = plJ', 

(2.8) 

(2.9) 

(2.10) 

which are eigenvalue equations. Thus the postulates (2.2) about operators 
representing the classical variables E and p of a particle are consistent 
with the quantum postulates of Einstein and de Broglie. The wave equa­
tion of which 1; is a solution is of second order in t provided ill ex [k[, which 
is the condition for classical waves to be non-dispersive. On the other hand 
the' matter wave' describing the motion of a free particle has E ex p2, or, 
from eqs. (2.6) and (2.7), ill ex [k[ 2. This essential distinction between a 
matter wave and a classical non-dispersive wave is embodied in the 
matter wave equation: Schrodinger's equation is only of first order in t. 
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The hydrogen atom: gross structure 

In Schrodinger's equation 'P is a function in co-ordinate space (x, y, z) 
and time. This is only a particular way of working. One could form a 
function CP in momentum space (Px, Py, pz) and time. 'P and CP are Fourier 
transforms of each other, and in the momentum representation the 
operator replacements for classical variables are different from those (2.2) 
which we have postulated in the co-ordinate representation. In fact 
Leightont in his book (p.93ff.) adopts the Fourier relationship between 'P 
and CP as a postulate, and finds the operator replacements (2.2) as a special 
result applicable in co-ordinate space. The reason why one nearly always 
uses the function 'P in describing atomic structure is because the potential 
V is easily expressed as a function of x, y, and z. 

Schrodinger's equation is equivalent to the non-relativistic form of the 
classical equation of conservation of energy (2.1). It therefore leads to a 
non-relativistic wave-mechanical theory. However, if we consider the 
four-vector displacement (x, y, z, ict) and the four-vector momentum (Px, 
Py, PZ' iE/c) we see that the recipe for converting a momentum component 
to its operator form gives, for the fourth component, 

. . 0 i (. 0) lE/c ---> -lh -- = - lh-
o(ict) c ot 

or 

(2.11 ) 

which is the same as the postulate made separately about E (as distinct 
from p) in (2.2). The construction of a relativistic wave equation for a free 
particle from the relativistic equation of conservation of energy 

E2 = p2
C

2 + m6c4 

follows from the recipe for operators. Thus: 

~ 02'P = V2'P _ m6c2 'P. 
c2 ot2 h2 

(2.12) 

(2.13) 

This is called the Klein-Gordon equation for a free particle without spin. 
Electron spin is not a classical concept, nor is it a wave-mechanical con­
cept in x, y, z, t space, and its introduction into a wave equation is a much 
more complicated matter. This was achieved by Dirac. Notice that eq. 
(2.13) naturally contains the speed of light, c, whereas the non-relativistic 
Schrodinger equation does not. 

The point about this discussion of four-vectors is that functions of x 
and of Px (or rather kJ are related by a Fourier transformation in classical 
physics. The same applies to t and E (or rather w). These pairs of variables 

t R. B. Leighton, Principles of Modern Physics, McGraw-Hill, 1959. 
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2.2. Stationary states 

are conjugate variables in classical mechanics and are just the pairs which, 
in their operator form, do not commute: 

(2.14) 

These pairs are also connected by Heisenberg'S Uncertainty Principle 
which is another realization of the properties of non-commuting variables. 
The Fourier relationship between 'I' and <P is thus strongly suggested in 
this context. It is a good thin'g to have an intuitive feeling for Fourier 
transforms in this as in other branches of physics. 

2.2. Stationary states 

We now attempt to find solutions to ,the Schrodinger equation (2.4) 

if! a'I' = Yf''I' 
at 

under certain restricting conditions. 

(2.15) 

If Yf' does not depend explicitly on the time we may try a separation of 
variables: 

'I' (x, y, z, t) = t/J (x, y, z) T(t). (2.16) 

Yf' does not operate on Tnor a/at on t/J. So dividing eq. (2.15) by t/JTwe 
obtain: 

It follows that 

~dT = ~Yf't/J. 
T dt t/J 

I 

if! dT , 
--=£ 
T dt ' 

-;f Yf't/J = £', 

(2.17) 

(2.18) 

(2.19) 

where £' is a separation constant, independent of t and of x, y, Z, and 
having the dimensions of an energy. 

Equation (2.18) has the solution 

Absorbing the constant To into t/J we obtain 

'I' = t/J(x, y, z) e-iE'tlh 
and 

Yf't/J = £'ijJ. 

(2.20) 

(2.21) 

(2.22) 
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The hydrogen atom: gross structure 

The probability density is 

p*p = eiE't/h 1jJ* e-iE't/h IjJ = 1jJ*1jJ (2,23) 

which is independent of time. Hence, without having specified exactly 
what system we are talking about, we see how the idea of stationary 
states of a system arises, an idea which is implied by the assumption that 
the Hamiltonian does not depend explicitly on the time, If Yf is to describe 
the stationary states of an atom, we are assuming in particular that the 
interaction of the atom with a (time-dependent) radiation field is so weak 
that the presence of the field can be neglected. The atom can then be 
treated as an isolated system characterized by the value of E', which turns 
out to be the total energy of the atom, The value of E' has to be found from 
eq. (2.22) which is a time-independent eigenvalue equation (Schrodinger's 
time-independent equation), E' may take discrete or continuous eigen­
values. 

If the interaction with the radiation field is not neglected a description 
of this interaction has to be incorporated in the Hamiltonian (this can 
actually be done via a time-dependent vector potential for the field). 
Then the atom can no longer be considered as isolated and the concept of 
stationary states breaks down, except as a zeroth approximation in which 
it is considered that transitions between stationary states take place with 
the emission or absorption of electromagnetic radiation. This matter is 
considered in chapter 3, 

2,3. Expectation values 

We assume that with every observable (that is to say, a measurable dy­
namical quantity such as position, momentum, angular momentum, 
energy, etc.) we can associate an operator which operates on a wave 
function. For such an operator A we can define an expectation value <A) 
by the equation 

<A) = f P*AP dr 

subject to the normalization condition 

f p*p dr = 1 

(2,24) 

(2.25) 

where the integration is taken over all space (it is necessary therefore that 
p*p be integrable over all space). <A) has the nature of an average value 
of the results of many measurements of the observable A when the 
measurements are made on the system in the state p, If u is an eigen­
function of A with eigenvalue a, that is, if 

Au = au (2.26) 
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2.4. Solution of Schrodinger's equation for a Coulomb field 

then 

<A) = f u* Au dr = a f u*u dr 

or 
<A) = a 

(2.27) 

(2.28) 

where u is normalized. When the system is in the state u one will always 
obtain the result a for a measurement of A (see eq. (A.3) of appendix A). 

We now confirm that the stationary states of section 2.2 are charac­
terized by fixed values of the energy in the sense that <£'), the expectation 
of the energy operator, is the value E of the energy one would obtain as the 
result of a measurement when the system is in a stationary state; for we 
have 

<£') == E = f P*ih ap dr at 

= f eiE'tl" I/I*(ih) (-iE'/h)I/I e-iE'tl"dT 

= E' f 1/1*1/1 dr 

= E' (1/1 normalized) (2.29) 

which identifies E' for stationary states with <£'). 
We are now in a position to discuss the gross structure of the hydrogen 

atom by the method of wave mechanics, that is, by the solution of Schro­
dinger's equation (2.22) as a differential equation with boundary condi­
tions, We do this in the next section. Later on we shall make use of some 
more general theorems of quantum mechanics, A summary of the 
theorems we shall need is given in appendix A. 

2.4. Solution of Schrodinger's equation for a Coulomb field 

The non-classical aspect of this discussion of Schrodinger's equation lies 
in the introduction of the wave function, We have seen that the recipe, 
eq. (2.2), for converting a classical momentum to its operator form 
depends on the choice of the co-ordinate representation P(x, y, Z, t) 
rather than, say, the momentum representation cJ>(Px, PY' PZ' t). But so far 
the wave function has only been a device, with the formal interpretation 
of a probability amplitude, on which operators representing dynamical 
variables can operate and thus throw the equation of motion of a system 
into the form of a wave equation. To get a feeling for the actual dependence 
of the wave function on the co-ordinates in a physical problem we must 
solve a differential equation. The simplest problem is that of the hydrogen 
atom, and we shall see what form the wave function takes. 
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The hydrogen atom: gross structure 

The hydrogen atom is assumed to consist of a point nucleus of charge 
Ze, mass M, and an electron of charge - e, mass mo. The only term in the 
potential energy which we consider here is the electrostatic interaction 
V(r) = - Ze2 j4neor between these two charges. V(r) depends only on the 
scalar distance r of the electron from the nucleus. This is the key to the 
whole problem, and we can deduce certain results from the mere fact that 
VCr) represents a central field without knowing that the form of this field 
is a Coulomb one. VCr) represents a central field in the relative co-ordinate 
r. Bya separation of variables we can eliminate the centre-of-mass motion 
of the atom (see problem 2.1) and work in spherical polar co-ordinates 
(r, e, ¢). SchrOdinger's time-independent equation for the relative motion 
has the following simple form if the reduced mass of the electron-nuclear 
system, m = moMj(mo + M), is introduced: 

(~~2 '12 + vcr)) !/J = E!/J, (2.30) 

V(r) = -Ze2j4neor (2.31 ) 

where 

'12 = rl2 {:r (r2 :r) + Si~ e :e (sin e :e) + si~2e O~2}' (2.32) 

and the origin of co-ordinates is taken at the nucleus. 
The most important result which follows from the fact that VCr) is a 

central field is that we can achieve a separation in radial and angular 
parts: 

!/J(r, e, ¢) = R(r)y(e, ¢). (2.33) 

A further separation is possible: 

y(e, ¢) = 8(e)lf>(¢). (2.34) 

These separations lead to three differential equations, one each in the 
co-ordinates r, e, ¢ (see problem 2.2): 

d 2lf> 
d¢2 = -milf>, 

1 d (. d8) mi 
- sin e de Sill e de + sin2e 8 = l(l + 1)8, 

1 d ( 2 dR) l(l + 1) 2m 2mE 0 
r2 dr r ct; - r2 R - h2 V(r)R + 7 R = , 

(2.35) 

(2.36) 

(2.37) 

where - mi and l(l + 1) are separation constants. These constants are 
written in this way because we shall soon attach significance to them. 
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2.4. Solution of Schrodinger's equation for a Coulomb field 

The combination of eqs. (2.35) and (2.36) gives the equation for the 
total angular function Y( e, cjJ): 

- -- - sm e - - -- -- Y = l(l + 1) Y. {
I a (. a ) 1 c

2 
} 

sin e ae ae sin2e CcjJ2 
(2.38) 

Equations (2.35) and (2.36) are both eigenvalue equations. Purely mathe­
matical considerationst show that the only acceptable solutions to eq. 
(2.36) are those for which e is differentiable and behaves regularly for 
cos () = ± 1. The solutions are proportional to the associated Legendre 
functions P'!" (cos 0) which are polynomials of degree I where 

1= 0, 1,2, ... (2.39) 

and ml is also an integer, positive or negative, restricted to the values 

(2.40) 

The solution of eq. (2.35) is 

(2.41 ) 

where, from the preceding discussion, ml is restricted to certain integral 
values. Thus <1>, like e, is a single-valued function of its argument. This 
single-valued ness is not a necessary postulate of wave-mechanics, but a 
result derived from the condition that we are working in a central field in 
(r, e, cjJ) space. 

The proportionality constant in e = N,!,' P'!" (cos 0) may be chosen so 
that the total angular function Y is normalized to unity. Then Y, to which 
are attached the labels I, mf, is a spherical harmonic 

[
(21 + 1) (l - m )'JI /2 

Y'!" (0, cjJ) = (_l)m, 4n (l + m:); P'!" (cos e) eim,<I> 

for m l ~ 0 (2.42) 
and 

where 

f y,!,,* Y'!" d Q = f: rr 

dcjJ L" sin 0 d e y,!,,* Y'!" = l. 

The spherical harmonics have the orthogonality property 

f yri* Y'!" d Q = c)m,.mi c)l.l'· 

(2.43) 

(2.44) 

t For mathematical solutions to the equations a book on quantum mechanics should be 
consulted. 

17 



The hydrogen atom: gross structure 

Thus we find we have introduced mathematically two integers I and m1 for 
which we must find a physical interpretation later. A list of some of the 
spherical harmonics, together with the form of PT' (cos 0), is given in 
table 2.1. 

Table 2.1. Spherical harmonics 

o J3 Y, = 4rr cos e 

Y~' = =+= J2sineeHP 
8rr 

yg = J~ (3 cos2 e - I) 
16rr 

Y i' = =+= - sin () cos () e -, JI5 +.4> 

8rr 

y±l = J~sin2()e±2'4> 
2 32rr 

Y~/ «(), 1» = (_l)m/ {~214:1) ~ ~ ::~:}'12 PI" (cos ()) e'm/4>, ml ~ 0; 

Y,'"' = (_l)m/ y~/'; 

d lmd 
pm/(x) = (I - x2)lm//21 __ P(x)· 

I dxlmd I ' 

1 d' 2 I 
PI(x) = 21t! dx' (x - 1). 

r" r' Normalization: Jo d1> Jo sin e de y;,,/' Y;"/ = 1 

We repeat that this discussion of the angular part of the wave function 
has depended on the existence of a central field V(r) but not on the 
detailed form of V(r). 

To obtain the energy eigenvalues E we need to solve eq. (2.37). For this 
purpose we must now use the explicit form of V(r) = -Ze2/4ncor. We 
restrict ourselves to negative values of E which correspond to bound 
states of the atom and we ensure this by the substitution 

112 
a2 = (2.45) 

8mE 

Further, we change the variable: 

p = ria, (2.46) 

and write 

(2.47) 
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2.4. Solution of Schrodinger's equation for a Coulomb field 

Equation (2.37) then becomes 

~ ~ (p 2 d R) + { ~ _ ~ _ 1(1 + 1 )} R = 0. 
p2 dp dp p 4 p2 

Often a new form of the wave function is chosen: 

per) = rR 

in which case eq. (2.48) becomes 

d
2
P(r) + {~ _ ~ _ 1(1 + I)} per) = 0. 

dp2 P 4 p2 

(2.48) 

(2.49) 

(2.50) 

The solution of eq. (2.48) for which R remains finite as r -> x and which 
behaves properly at the origin, that is rR -> ° as r -> 0, is written 

R(p) = e- p / 2 pIF(p) (2.51 ) 

where F(p) is a polynomial which is related to the associated Laguerre 
polynomial. Equation (2.51) is written in this way to make explicit the 
asymptotic forms e- p

/
2 as p -> x, and pi as p -> 0. The condition that 

this power series in p should terminate is that ). is an integer, 

A = n (n ~ I + I) (2.52) 

or 

n = I + I + n' (n' = 0, 1, 2, ... ). (2.53) 

Thus again we have introduced an integer mathematically. 
The function R is labelled by two indices n and I. Rnl(r) is normalized 

according to 

(2.54) 

or 

t<) P:tCr)Pn,(r)dr = 1, (2.55) 

so that the total wave function t/!n.l,m/ = Rnl(r) Y7'(O, </J) is also nor­
malized. A tabulation of Rn' for small values of n and I is given in table 
2.2. Graphs of Rnl are plotted in Fig. 2.1. From these graphs it can be 
seen that n is a measure of the radial extent of the wave function. 

It is clear that there is an important qualitative difference between the 
wave functions for I = ° and I i= 0. For I i= 0, Rnl (r = 0) vanishes. 
Equation (2.50) is in the form of a one-dimensional equation of motion 
in which the term -/(l + 1)/ p2 describes an effective centrifugal poten­
tial which keeps the electron away from the nucleus. On the other hand, 
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The hydrogen atom: gross structure 

for I = 0 there is no centrifugal potential term and the probability density 
at the origin is 

(2.56) 

This behaviour IS particularly important in the theory of hyperfine 
structure. 

Table 2.2 

Rn,{r) 

(Z)3/2 (zr) 
R,O =;;;, 2 exp - ao 

( 
Z )312 ~ zr) --- 2 I - - exp 

2ao 2ao 

R21 = (2~J 2 J3 (~) exp (;~r) 
R30 = (~)312 2 [I _ 2 Zr + j (3zr)2] exp (-zr) 

3ao 3ao ao, 3ao 

R31 = (~)3124J2(Zr)(1 _! zr)exp(-zr) 
3ao 3 3ao 3ao 3ao 

R32 = (~)312 ?:..,J2 (Zr)2 exp (- zr) 
3ao 3J5 3ao 3ao 

Un = 

Normalization: 1'" R~ Rn,r2 dr = I 

The negative energy eigenvalues are given by the condition (2.52) and 
eq. (2.47) which become 

Z2 e4 m 
E = 

n - (4m;o)2 2h 2n 2 (2.57) 

Equation (2.57) is just the quantized energy found by Bohr. The counting 
of the principal quaf!lum number n matches Bohr's counting: n = I, 2, 
3, ... With this choice n-I-I or, from eq. (2.53), n' is just the number of 
nodes in Rnl . (An analysis of the spherical harmonics shows that they 
have I - Imll nodes in the range 0 < e < n.) Thus we have an interpreta­
tion of the principal quantum number n. It is intimately related to the 
radial part of the wave function in the central-field approximation. 

Equation (2.57) contains the reduced mass m of the system. The equa­
tion therefore applies to all the hydrogenic atoms hydrogen, deuterium, 
tritium, muonium, positronium, etc. The Z-dependence is included, so 
20 



2.4. Solution of Schrodinger's equation for a Coulomb field 

2·0 

'·0 
(ilo)3/2R L nJ 

1'1=1 

0·5 

0-2 
0·, 

16 20 Zr/ao -

0·5 

20 Zr/ao -

20 Zr/ao-

Fig. 2.1. Radial wave functions for hydrogen. Note the different ordinate scales. 

the formula applies to He +, Li + + ... as well (see also problem 2.9). If 
we make the isotope dependence explicit we can write 

or 

E = ---- --- --. , I (I e4rno) Z2 M 
n (4m;o)2 2 112 n2 rno + M 

Z2 M 
En = -hcR - ----

00 n2 rno + M 

(2.58) 

(2.59) 

where Roo is a universal constant, the Rydberg, corresponding to the case 
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The hydrogen atom: gross structure 

of a nucleus of infinite mass: 

I I (Imoe4
) _I Rx = h--: ~4 )2 - L2 = 109,737,31 cm 

( (m,o 2 T/ 

(2.60) 

In electron volts R~ is about 13·6 e Y, and in cycles per second about 
3·3 x 10 15 Hz. We postpone a quantitative discussion of the spectrum of 
hydrogen until section 2.6. 

With n = 1, Z = 1, m = mo, we have another constant ao, the radius 
of the first Bohr orbit: 

(2.61 ) 

In Bohr's theory the' radius of an electron orbit' is, for a hydrogenic atom 
of infinite nuclear mass, n2(ao/Z). In wave-mechanics, however, we speak 
of the expectation value of various powers of r, which we can evaluate 
from 

<rk
) = 1'" R:/Rn1r

2dr. (2.62) 

A list of these for small positive and negative k is given in table 2.3. We 
note that <r- I) coincides with Bohr's value, but that <r) for I = n - 1, 
the case which actually corresponds to Bohr's circular electron orbit, is 

2 ( 1) ao <r)l=n-1 = n 1 + 2n Z' 

This approaches Bohr's value only as n -+ X:, an example of the cor­
respondence principle which requires that wave mechanics should include 
classical mechanics as a limiting case: that is, the case for which con­
ceptually h -+ 0 or in practice n -+x:. 
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Table 2.3 

(r') = 1" R:/Rn,r
2 dr 

(r) = t[3n2 
- /(1 + IJ] ~ 

(r2) = H5n 2 + 1 - 31(1 + l)]n2(~y 

_I 1 (2) (r ) = ~ ~ 
n2 ao 

1 (2)3 
V 3) = l(l + tJU+-l)n3 0, 



2.S. The quantum numbers I and m, 

Bohr's model of a hydrogen atom in its most classical aspect of plane­
tary particle motion is superseded in wave mechanics, except in so far as it 
contributes to the language (e.g., the word' orbit') and is interpreted in 
the spirit of the correspondence principle. The demand for a model as a 
pictorial representation is satisfied in wave mechanics by graphical plots 
of the mathematical results: in particular, in the case of hydrogen, by an 
energy-level diagram which is a one-dimensional plot of eq. (2.57) and by 
plots of spatial distribution functions such as Fig. 2.1. 

Bohr's theory contained the concept of orbital angular momentum. 
We now discuss this in relation to Schrodinger's equation. 

2.5. The quantum numbers I and m, 

The classical orbital angular momentum 

2 = r x p 

becomes the operator 

iii = -ihr x V, 

(2.63) 

(2.64) 

where we have introduced the factor h into the definition of I in order to 
avoid carrying units of h later. In spherical polar co-ordinates the z­
component of I, which from eqs. (2.63) and (2.64) is given by 

I ·h a ·h a 
h z = XPy - YPx = -1 X ay + 1 Y ax' (2.65) 

becomes 

hI = -ih~. 
z acf> (2.66) 

By the application of commutation relations similar to eq. (2.14) we find 
that 

I 
12 = h2 (r x p) . (r x p) 

becomes (see problem 2.4) 

I { a ( a) 8
2 

} 12 = - sin2e sin e ae sin e ae + acf>2 . 

Now eq. (2.38) is just the eigenvalue equation 

12 Y;'" = /(l + I) Y;"', 1 = 0, 1, 2, ... 

We also have 

/zY;'" = m,Y;"', m, = -I, -/ + 1, ···,0, ... , I. 

(2.67) 

(2.68) 

(2.69) 
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The hydrogen atom: gross structure 

Thus we verify that the spherical harmonics Y7" are eigenfunctions of 
)2 and /z simultaneously. Since )2 and Iz do not operate on the radial part 
of the wave function, 1/1 itself is a simultaneous eigenfunction of)2, Iz and 
of Yt'. (The z-component of) is singled out merely under the same con­
vention by which the axis of spherical polar co-ordinates is called the 
z-axis.) So we have interpreted the quantum numbers m1 and I: m1 is the 
expectation value of the operator corresponding to the z-component of 
the classical orbital angular momentum, and 1 is its maximum value. We 
can form a picture (the beginnings of another model, the vector model) of 
a vector ) whose projection on the z-axis is allowed to take only the 
values m1 differing from each other by integers, and whose length is 
labelled by 1 where the actual eigenvalue of the operator J2 is l(l + 1). 
The fact that there are only 21 + 1 eigenfunctions of Iz for a given I, and 
not an infinite number, is referred to as space quantization. (See Fig. 2.2.) 

z 

1=2 

-2 ---

Fig. 2.2 Space quantization, showing the 21 + 1 projections of an angular momentum 
vector I on the z-axis for I = 2. 

An important property of the vector operator) is that its components 
do not commute with each other. The commutation relations are in fact 
(see problem 2.5) 

(2.70) 

which follow from eqs. (2.65) and (2.14). The three such relations can be 
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2.5. The quantum numbers {and m, 

combined in the symbolic form 

x I = il. (2.71 ) 

(Remember that this is an operator equation as distinct from the equation 
for classical vectors: ) x ) = O. This important difference need not deter 
us from using the same notation for both quantities.) Although the com­
ponents of ) do not commute with each other, each component of 1 
commutes with )2. Hence we have the situation, discussed in connection 
with eq. (A.16) of appendix A, in which /z and)2 should have simultaneous 
eigenfunctions. (As already explained Iz is singled out by convention.) 
We have just found that this is the case: in eqs. (2.68) and (2.69) the 
Y?,' are the simultaneous eigenfunctions of)2 and Iz . 

It is also true that both 12 and Iz commute with the Hamiltonian of 
eq. (2.30). The consequence of this is of great general importance. If an 
operator B does not depend explicitly on the time, then the time rate of 
change o[its expectation value <B) = S tp*Btp dT is 

- - = -- Btp dT + tp*B - dT. d<B) f atp* f atp 
dt at at (2.72) 

Now.Yt' = iii (a/at), so 

iii d~~) = - f ( -iii 0;*) Btpdr + f tp*B (iii aa~) dT 

= - f ( Ye*tp*) BtpdT + f tp*BYetp dT. (2.73) 

But.Yf is a Hermitian operator (eq. A.6), hence 

iii d~~) = - f tp* YeBtp dT + f tp*BYetp dT 

= f tp*(BYe - YeB)tp dT (2.74) 

= < [B, YeJ). 

If [B, Ye] = 0, d<B)/dt = 0 and <B) represents a constant of the motion. 
That is, with .ff' and t representing conjugate variables, commutation 
with Ye implies independence of t. 

Since)2 and /z commute with the Hamiltonian of the hydrogen problem 
they represent constants of the motion. By the correspondence principle 
one would argue that classically the orbital angular momentum is a 
constant of the motion because there is no torque upon it, and hence one 
might expect this to be true in quantum mechanics. In general, to find the 
constants of the motion we should seek those variables represented by 
operators which commute with the Hamiltonian. 
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The hydrogen atom: gross structure 

The spherical harmonics, which are the eigenfunctions of orbital 
angular momentum, have an important property under inversion of 
co-ordinates through the origin: if 

(r, e, ¢) ----> (r, n - e, ¢ + n) 
then 

(2.75) 

The new sign of YI" under inversion of co-ordinates depends only on 
'(see problem 2.6). YI" is said to have even (odd) parity if' is even (odd). 
Since the radial function Rnlr) is even, '" itself has even (odd) parity if' is 
even (odd). We can use an abstract operator P to describe this change of 
co-ordinates. For any function "'(r) the definition of P gives 

P"'(r) = w( - r) (2.76) 
and 

p 2"'(r) = P",( - r) = "'(r), (2.77) 

so p 2 has the eigenvalue + 1. If",(r) is to have a well-defined parity it must 
be an eigenfunction of P itself: it has either even or odd parity corre­
sponding to the eigenvalues ± I of P. Also in generaU if there are no 
external forces acting on a system, the Hamiltonian is invariant under the 
parity operation, that is P commutes with .Yf. Hence the parity of a wave 
function is a constant of the motion, and so a wave function of definite 
parity keeps that parity for all time. We shall return to a discussion of this 
important symmetry property when we come to treat selection rules for 
radiative transitions. 

2.6. The hydrogen energy spectrum 

The energy levels for the gross structure of hydrogen are described by 
eq. (2.57) with Z = I and with m equal to the reduced mass of the electron­
proton system. Figure 2.3 is an energy-level diagram for hydrogen with n 
running from 1 for the ground state to 00 at the ionization limit. Above 
the ionization limit there is a continuum of energy levels corresponding to 
the positive energy solutions of Schrodinger's equation with V = O. We 
have not actually discussed these solutions but they clearly refer to a free 
electron, whose energy eigenvalues are not quantized. 

Spectroscopic observations are concerned with the transitions between 
the energy levels. We shall see in chapter 3 that selection rules have to do 
with the symmetry properties of angular momentum. For the principal 
quantum number n there are no selection rules, and electric dipole radia-

t Actually, the statements made here are not true for systems involved in the so-called 
'weak' interaction, as in beta decay. But in discussing atomic structure we confine ourselves 
to the electromagnetic interactions for which conservation of parity does hold. 
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2.6. The hydrogen energy spectrum 
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Fig. 2.3. Energy level diagram for hydrogen. 
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hvnn , = En - En" (2.78) 
is emitted in transitions between the stationary states for all nand n'. 

The observed spectral lines form simple series the first few of which 
have been given names: Lyman, Balmer, Paschen, Brackett, Pfund. Each 
series converges to a limit beyond which a continuous spectrum is observed 
under favourable excitation conditions in a discharge tube. The first three 
series are well separated from each other: notice that the excited energy 
levels all lie in the top quarter of the diagram, so even the lowest-frequency 
member of the Lyman series lies in the far ultraviolet at 1,216 A and the 
series runs to a limit of 912 A corresponding to the ionization potential of 
hydrogen: 109,678 cm -lor 13·595 eV.t The Balmer series is the best­
known because, unlike the others, it lies in the visible. Its individual 
members are given names: H 2 , Hp, H y , etc. The lowest-frequency member, 
H 2 , occurs at 6,563 A and is responsible for the reddish colour ofa clean 
hydrogen discharge. 

The entire spectrum of deuterium is shifted from that of hydrogen 
because deuterium has a different reduced mass correction. The ratio of 
the frequencies of deuterium to those of hydrogen is 1·00027. Thus the 

t Spectroscopists usually quote wavelengths referred to measurements in dry air at 18°C 
and 760 mm Hg. Wavenumbers, on the other hand, refer to vacuum conditions. The refrac­
tive index of air is about 1·0003. 
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The hydrogen atom: gross structure 

lines of deuterium are shifted towards the violet. The ionization potential 
of deuterium is 109,708 cm -\, and the wavelength of D~ is about 1·77 A 
less than that of Ha. This is an example of isotope shift arising from the 
normal mass effect. Such a large separation can easily be resolved, and 
indeed this effect led to the original discovery of deuterium. 

From a theoretical standpoint an important feature of the gross 
structure of hydrogen is that the energy eigenvalues (eq. (2.57)) depend 
only on n whereas the eigenfunctions depend on n, I, and mi' There are n 
values of I for each nand 21 + 1 values of ml for each I. Therefore there 
are 

n-l 

I (21 + I) = n2 

o 

wave functions for each energy level. The energy levels are said to be 
n2-fold degenerate. The degeneracy with respect to ml is intuitively 
obvious, for ml describes the projection of the vector I on a co-ordinate 
axis (the z-axis) in space: if this axis is not defined by some physical 
criterion but is arbitrarily chosen (as here) for mathematical convenience, 
then the physically observable energy cannot depend on this arbitrary 
choice. We are assuming, of course, that x, y, z space is isotropic. The 
degeneracy with respect to 1 is a special result arising from the fact that 
for hydrogen-like atoms (and for these atoms only) V(r) is a pure Coulomb 
field: V(r) x r- 1; and further, that Coulomb's law, originally derived 
from observation in classical electrostatics, is valid over the entire range 
of r of interest in atoms. This is called an accidental degeneracy. It occurs 
likewise in the equivalent classical problem-the Kepler problem of 
planetary motion under an inverse square law of force, in which all 
orbits of a given semi-major axis have the same total energy independent 
of their eccentricity. 

We shall find that the degeneracy of a level is lifted to a certain extent 
when we consider further interaction terms which we have so far neglec­
ted. For example, when a magnetic or electric field is applied, the field 
direction defines an axis in space and the energy of the atom comes to 
depend on mi' We have already said that we shall use the method of per­
turbation theory for treating these additional (small) interactions. We 
shall nearly always find that the perturbation is being applied to an 
initially degenerate system so that we have to use the so-called degenerate 
perturbation theory. Unfortunately this is not quite as straightforward as 
non-degenerate perturbation theory and the slight additional complica­
tions have to be faced. A summary of the results of perturbation theory is 
given for future reference in appendix B. 

Before we leave the gross structure of hydrogen it is worth noting that 
in this special case a rather rare situation occurs: states of opposite parity 
are degenerate with each other for n > 1, that is, different states with I 
both even and odd have the same energy owing to the accidental de-
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Problems 

gene racy with respect to I. This has interesting consequences for the Stark 
effect in hydrogen (chapter 8). 

Problems 

(Those problems marked with an asterisk are more advanced.) 

2.1. Set up Schr6dinger's time-independent equation for the motion of 
a proton and an electron under the interaction VCr) where r is the distance 
between the proton and the electron. By a separation of variables derive 
eq. (2.30) for the relative motion 

{- ;~ '12 + Vcr)} tP = EtP 

where m is the reduced mass and '12 is expressed in relative co-ordinates. 
2.2. By a separation of variables in spherical polar co-ordinates, 
tP(r, e, <jJ) = R(r)e(e)cp(<jJ), derive from the Schr6dinger equation (2.30) 
three separate equations for R, e and CP, eq. (2.35), (2.36), and (2.37). 
2.3. The general form of Rn ;I=n-l is 

[(2n)!T 1/2 C~J3/2 (::In-l e-rlnao. 

With this function find <r2) and <r)2 and show that 

br == «r2) - <r)2)1/2 = (2n + 1)-1 /2<r). 

Attach a classical meaning to this result for large n. 

*2.4. Show, by using commutation relations, that 12, which is (l/h2) 
(r x p) . (r x p) becomes 

~2 {r2p2 - (r·p) (r·p) + ih (r. p)}. 

Hence show that, with 

V = - - r - + -- - sm 0 - + ---- , 2 I {o ( 2 0) I 0 ( . 0 ) I 0
2 

} 

r2 or or sin e oe 00 sin2e 0<jJ2 

1 = --.- smO- sme- + - , 2 1 {. 0 ( . 0 ) 0
2 

} 
sm2e 00 oe 0<jJ2 

which is eq. (2.67). 
*2.5. From the commutation relations XPx - PxX = ih (and cyclically) 
derive the commutation relations I)y - lix = i/z (and cyclically) for 
orbital angular momentum, where hlx = ypz - ZPy (and cyclically). 
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The hydrogen atom: gross structure 

2.6. Verify that for spherical harmonics Y;"'(8, </J) 

Y;"'(n - 8, </J + n) = (- IY Y;"'(8, </J). 

(Use the formulae of table 2. I.) 
2.7. Show pictoriaIIy the dependence of the hydrogenic wave functions 
on angle by plotting the function I Y;"'(8, </J)1 2 on a polar diagram for 
I = 0, I, and 2. 
2.S. Show that the Paschen series in the gross structure of hydrogen does 
not overlap the Balmer series and find which series are the first to overlap. 
2.9. A negative muon is a particle with a mean life of about 2 x 10 - 6 s, 
which is long compared with times characteristic of radiative transitions 
in atoms. It interacts with a proton electromagneticaIIy through its 
charge, but any other interaction between a muon and a nucleon is ex­
tremely weak. A negative muon can be captured by an atom, and during 
the course of its lifetime it can form with the nucleus a hydrogen-like 
muonic atom. In this respect the muon can be treated like an electron 
except that its rest mass is 207 times that of the electron. 

Consider the muonic transition Is-2p (neglecting fine structure effects) 
in titanium (Z = 22, A = 48). 

(a) What is the radius (J,jZ of the muonic 'first Bohr orbit' in Ti? 
Compare this with ao/Z for an electron. 

(b) Hence show that, whereas electronic X-ray levels have to be treated 
in terms of Zeff = Z - (J where (J(n, l) describes screening of the nuclear 
charge by other electrons, for muonic levels we can ignore screening by 
the electrons and can take (J = o. 

(c) What is the radiated energy (in MeV) for the muonic transition 
Is-2p in Ti on the assumption that the nucleus is a point charge? 

(d) Evaluate the effective radius R of the Ti nucleus from the formula 
R = 1·2 X 10- 13 A 1/ 3 cm. 

(e) Show that the potential energy VCr) of a particle of charge - e at 
radius r inside a charged sphere of radius R in which the charge Ze is 
uniformly distributed throughout the sphere is 

VCr) = ~-- - - - , ,. ~ R -Ze2{3 ,.2} 
4m>oR 2 2R2 

and outside, 

where V(oo) = o. 
(f) Evaluate the minimum (i.e., most negative) potential energy (in 

MeV) for a muon or electron inside a Ti nucleus according to the model of 
problem (e). Compare Vrnin with the rest energy of the muon and of the 
electron. Hence, justify the use of a non-relativistic approximation/or the 
muon in what follows. 
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(g) Use first-order perturbation theory, with hydro genic wave func­
tions, as a crude estimate to show that the finite nuclear size leads in this 
approximation to an energy shift of the muonic Is level of 

llE = <V _ V> :::0 _l_~ Ze
z 
(~)Z 

p 4m;o 5 (a,)Z) a,,/Z 

where V is the potential energy of problem (e) and Vp is that for a point 
nucleus. Use the further approximation that 1I/I(r)I Z 

:::0 II/I(O)I Z in the 
range 0 ,,:; r ,,:; R. 

(h) Why is the corresponding shift for the 2p level much smaller? We 
neglect it. 

(i) Re-evaluate the radiated energy for the muonic transition Is-2p in 
Ti on the assumption that the nucleus is an extended charge with a uniform 
charge distribution over a sphere of radius R. (The experimental result is 
about 0·95 MeV.) 

(j) Repeat problems (a) and (d) for Pb (Z = 82; A = 208). For Pb the 
treatment of the other parts of this problem would be quite inadequate. 
2.10. Positronium is the bound system of an electron and a positron. 
Give a quantitative account of the gross structure of this system. 
2.11. The radial Schrodinger equation for hydrogen in its one-dimen­
sional form (eq. (2.50)) may be written as 

_hzdzP 
2m drznl + V1(r)Pnl = EnPnl • 

where 

is an effective potential energy. 
(a) Make a sketch of UI(r) as a function of x = Zr/ao for I = I. 
(b) Find an expression in terms of nand l( #0) for those values of x for 

which En = V/ (r). These values. x 1 and Xz. are called the classical turning 
points. A classical particle would be confined to the region between these 
points. where the kinetic energy is positive. Evaluate Xl and X2 for n = 3. 
I = 1. 

(c) Show that within the range Xl < X < X z the wave function 
Pnl(x) is concave towards the x-axis. but outside it Pnl(x) is convex 
towards the x-axis. 

(d) How many nodes does the function P3l have? Show that all the 
nodes of Pnl must lie within the classical region Xl < X < X z . 

(e) Make a qualitative sketch of the wave function P3l (x) based on 
this analysis. 

(f) Repeat the problem for n = 3. I = 0 and discuss the differences 
between the cases of I = 0 and I # O. 
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3. Radiative transitions 

In this chapter we want to discuss the interaction of an atom with an 
electromagnetic radiation field. A rigorous treatment of this problem has 
to overcome many difficulties and we shall not attempt to reproduce such 
a treatment. Our aim will be to find the selection rules for the atom and to 
indicate how relative intensities of spectral lines may be calculated. 

In speaking of an atom in this context we imply that we can in fact 
think of the atom as an entity separate from the radiation field, that is, we 
assume the approximation in which the atom and the field are loosely 
coupled. In this approximation the wave function describing the whole 
system, atom plus field, is separable into a product of functions, one for 
the atom and one for the field, each describing one system in the absence 
of the other. In this way we retain the concept of stationary states of an 
atom as an approximation. We shall confine the discussion to the discrete 
energy states of an atom. 

3.1. Einstein's A and B coefficients 

It is useful first of all to consider Einstein's treatmentt of the interaction of 
radiation with matter. For simplicity we consider at first just two energy 
levels EI and E2 of an atom, between which transitions are possible with 
absorption or emission of radiation of circular frequency OJ where 

(3.1 ) 

(see Fig. 3.1). We assume that these energy levels are 9 I-fold and 92-fold 
degenerate, and that in an assembly of such atoms the populations of 
levels I and 2 at time tare Ni and N2 per unit volume. Then three radiation 
processes are postulated: spontaneous emission, for which the rate of 
change of N2 depends on the population N2 in the upper level; absorption, 
for which the rate of change of N2 depends on the population NI in the 
lower level and also on the energy density per unit frequency range of the 
radiation p(w) where w satisfies eq. (3.1); and induced emission. for which 
the rate of change of N2 depends on N2 and p(w). We can formulate an 

t A. Einstein, Physikalische Zeitschrift 18, 121, 1917. This paper has been translated and 
reprinted in a book by D. ter Haar: The Old Quantum Theory, Pergamon Press, 1967. 
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3.1. Einstein's A and B coefficients 
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Fig. 3.1. Emission and absorption processes. 

expression for the rate of change of N2 in terms of Einstein's three proba­
bility coefficients A, B 12 , and B21 for spontaneous emission, absorption, 
and induced emission: 

in which the first equality simply conserves the total number of atoms per 
unit volume, NI + N 2. The coefficients A, B 12 , and B21 , are assumed to 
be independent of the populations. (Note that A and the B's do not have 
the same dimensions.) In the absence of a radiation field, p = 0 and 
eq. (3.2) has a solution 

(3.3) 

from which we see that A = I/r, the reciprocal of a lifetime r against 
spontaneous decay by emission of radiation. 

If we define probabilities for emission and absorption per atom per 
unit time, P ern and Pab , by 

(3.4) 

we have 

Pern = A + B21 p(w), (3.5) 

and 

(3.6) 

In eq. (3.5) the two emission processes have been grouped together, and 
eq. (3.6) describes the inverse process, absorption. In the steady state, 
defined by dN2/dt = 0, eq. (3.4) becomes 

(3.7) 

In the more general case in which levels 1 and 2 are just two out of many 
levels, the condition dN 2/dt = 0 still defines the steady state for level 2, 
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Radiative transitions 

but now the condition means that N2 remains stationary with respect to 
the total transfer to and from all other levels. The principle of detailed 
balancing goes further, and asserts that the steady state is maintained by 
transfer between each pair of levels i and j separately, in particular between 
levels I and 2. Moreover, if there are several transfer processes involved, 
the steady state is maintained by each process and its inverse ind@pendently, 
and in considering radiative transfer we can ignore other processes such 
as atomic collisions. So eq. (3.7) is true even in the more general case, and 
we shall write, for the steady state, 

BijP(wij) 

A ji + Bjj p(wij) 
(3.8) 

where Pij refers to the probability of absorption from the lower level ito 
the upper level j, Pjj refers to the probability of emission, and (V jj = 
Wjj = (Ej - E;)/I1. In the absence of a radiation field we can generalize 
eq. (3.3) at once by writing 

(3.9) 

whence 

(3.lO) 

and the lifetime of the level j against spontaneous emission to all lower 
levels i is 

(3.11) 

We now want to know the ratios Ajj:Bij:Bjj. For the purpose of this 
evaluation we appeal to the special case in which the atoms are in a steady 
state of thermal equilibrium at temperature T. Then 

N. g. 
---.l = -"e-hw,j/kT 

N j gj 

(3.12) 

Further, we assume that the radiation is in thermal equilibrium with the 
atoms in which case p(wij) has the frequency and temperature dependence 
given by Planck's equation for black-body radiation at temperature T: 

(3.13) 

We can now make eqs. (3.8), (3.12), and (3.13) compatible at all tem­
peratures if we take 

(3.14) 
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3.1. Einstein's A and B coefficients 

and 
2 2 

_ wij _ Wij ~_ gi 
A ji -"23 nwijBji - --z-.3 rtWij - Bij 

n c n c gj 
(3.15) 

These are the relations which Einstein found. In this treatment we have 
discussed an assembly of atoms, but A ji' B ij , and Bji are parameters 
associated with the internal structure of one atom, not with the assembly 
of atoms and not with the radiation field. The argument from thermal 
equilibrium has been introduced only to find the relation between A and 
the B's. Once the relationship, eq. (3.15), has been found it can be postula­
ted as generally true for an atom irrespective of whether thermal equili­
brium obtains or not. 

The radiation is specified here by its density p per unit frequency range. 
We can write an expression for the energy density in a significant way as 
follows: 

W
2 

p(w) = --z-.3 nnw. 
n c 

(3.16) 

The factor (J)2 /n 2 
('3 is the number of modes per unit volume per unit 

frequency range (see problem 3.1), nm is a quantum of radiation energy of 
frequency (J), and n is the average number of photons per mode. This 
definition of n can be connected with a model of radiation in which the 
radiation is considered as an assembly of simple harmonic oscillators of 
energy iillm, where n is a quantum number, so that Ii is the value of n 
averaged over the assembly of oscillators of frequency m. (For thermal 
radiation ii = (e""W/kT - 1) -1 and this is the quantity which arises in the 
derivation of Planck's formula from the statistical mechanics of an 
assembly of harmonic oscillators.) With eqs. (3.15) and (3.16), eqs. (3.5) 
and (3.6) can be written, for levels i and j, 

(3.17) 

and 

(3.18) 

whence 

Pern =?i. + nij. 

Pab gj iiij 
(3.19) 

These expressions underline the statement that the total emission process 
depends on the presence of a classical radiation field through the factor 
(1 + ii), and that the part of the process attributed to spontaneous emis­
sion is connected with the term 1 and persists even when ii vanishes. 
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Radiative transitions 

Having found how Einstein's A and B are connected we now want to 
see how B is related to particular properties of an atom. 

3.2. Transition probabilities 

In the situation in which atom and radiation field are loosely coupled the 
interaction between them is treated by time-dependent perturbation 
theory. In the textbookst on quantum mechanics the problem is treated in 
two ways: (a) the atomic energy levels are quantized but the radiation 
field is described classically (semi-classical method); (b) the radiation 
field also is treated as a quantized system (Dirac method). 

The semi-classical method is adequate for induced emission and 
absorption, but it does not account for spontaneous emission. This is 
because the classical approximation ii » 1 is made, so that in eq. (3.17) 
spontaneous emission is assumed to be negligible right from the start. The 
approximation corresponds, for thermal radiation, to 

ii = (ehw/kT - I) - 1 » 1 

or 

ii ~ k T/hw » 1. (3.20) 

which in eq. (3.16) or (3.13) leads at once to the Rayleigh-Jeans approxi­
mation for the energy density per unit frequency range: 

w 2 

pew) --> 23 kT, (kT» hw). 
n c 

(3.21 ) 

Of course, it is well known that in the optical range (w ~ 2n x 1015 Hz; 
hw/k ~ 5 x 104 K) spontaneous emission is the dominant process, and 
so the classical approximation is not a good one. Nevertheless, in the semi­
classical method B is found in terms of atomic properties and A is related 
to it by eq. (3.15). This recipe tells us what we want to know for elementary 
problems, and turns out to be satisfactory for this purpose because the 
more rigorous Dirac theory, which treats spontaneous and induced 
emission together, leads exactly to eq. (3.19), confirming that eq. (3.15) is a 
correct result. Thus no offence is committed against the principles of 
quantum electrodynamics in pursuing a semi-classical theory by neglecting 
1 with respect to ii. It is just that in doing so one gives up the possibility of 
understanding a mechanism for spontaneous emission to the extent that 
quantum electrodynamics gives such an understanding: one can only 
postulate the existence of spontaneous emission as in the Einstein treat­
ment. 

Let us now set up the semi-classical formulation of the interaction of an 

t E.g. R. M. Sillitto. Non-relativistic Quantum Mechanics, Edinburgh, 1960; 1. C. Slater, 
Quantum Theory of Atomic Structure, Vol. I, McGraw-Hill, 1960; 1. M. Cassels, Basic 
Quantum Mechanics, McGraw-Hill, 1970. 
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3.2. Transition probabilities 

atom with a classical radiation field to see what further approximations 
are made. In Schrodinger's equation 

alp 
ih at = £'P (3.22) 

the Hamiltonian for a single-electron atom is modified to take account of 
the interaction between the electron charge, - e, and an applied radiation 
field. The theory is non-relativistic in the sense that intrinsic spin is 
omitted. 

The applied field is represented in general by scalar and vector poten­
tials ¢ and A which are related to the electric and magnetic field ampli­
tudes, E and B, by 

cA 
E= -V¢-~, 

ot 

B = curl A. 

The modified Hamiltonian then readst 

which we write as 

where 

I 
£ = - (p + eA)2 - e¢ + V, 

2m 

p2 
£0 = - + V 

2m 

describes the unperturbed atom and 

e e2 

£' = - (p . A + A . p) +- A 2 - e<J> 
2m 2m 

is treated as a perturbation. 

(3.23) 

(3.24) 

(3.25) 

(3.26) 

(3.27) 

(3.28) 

We shall regard the radiation field as an incoherent superposition of 
plane waves periodic in time for each of which 

¢ = 0; 

where (J) is the circular frequency and k is the wave vector. 
Then from eqs. (3.23) and (3.24) we have 

E = 2wAo sin (wt - k . r), 

B = 2 (k x Ao) sin (wt - k . r), 

(3.29) 

(3.30) 

(3.31 ) 

t The introduction of the electromagnetic potentials in this way may come as a shock. 
For clarification, see, for example, R. H. Dicke and J. P. Wittke, Introduction to Quantum 
Mechanics, Addison-Wesley, 1960; in particular, read the discussion ofc1assical mechanics 
leading up to their eq. (5.52). 
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Radiative transitions 

so Ao is related to the amplitude of the electric field and its direction 
specifies the polarization of the electric vector. We are also free to choose 
the gauge 

V· A = 0 (3.32) 

which ensures that the wave is transverse and also has the convenient 
property that p commutes with A (see problem 3.2), so the perturbation 
may be rewritten 

(3.33) 

Because of the assumption of a weak interaction between radiation and 
matter we now neglect the small term quadratic in A which actually 
describes processes which involve an interchange of two photons, and we 
restrict the discussion to the term linear in A (see problem 3.3). Thus we 
are dealing with the situation in which a weak external (time-dependent) 
field induces the atom to emit or absorb one photon. In the language of 
the quantum number n of a simple harmonic oscillator, we have the 
selection rule for the field ~n = ± I. Thus finally eq. (3.33) reduces to 

, e 
£' = -A· p. 

m 

The Hamiltonian (3.26) is Hermitian. 

(3.34) 

In the semi-classical approach the wave function in eq. (3.22) is expan­
ded in terms of the stationary states of the atom, since the method is 
concerned primarily with changes in the state of the atom with time rather 
than changes in the state of the field: 

'I' = LCnl/lne-iEnt/h. 
n 

The I/In are the space-dependent wave functions satisfying 

Yf O.I/In = Enl/lm 

(3.35) 

(3.36) 

in which, for simplicity, we assume no degeneracy, and the Cn are time­
dependent normalized coefficients with the following interpretation: given 
that the atom is in state i at time t = 0, i.e., ci(O) = I, Cn;ti(O) = 0, we 
wish to find the probability Ici!W that after a time t the atom is in tht: 
state j. Schrodinger's equation becomes a differential equation in the Cn 

which enables us to find lcitW: 
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3.2. Transition probabilities 

Since t/ln is an eigenfunction of .Yt' 0, with eigenvalue Em eq. (3.37) becomes 

". . (iEnf)", (iEnt) ~ lhcnt/ln exp -h = ~ cn.Yt' t/ln exp -h . (3.38) 

With the further assumption that Yf' is so small that Cn does not change 
much with time, we use the initial values of Cn on the right-hand side of 
eq. (3.38) as an approximation: 

" 'h' .1, (iEn/) -.LP',I, (iEi/) ~ 1 Cn'l'n exp -h =..fl 'l'i exp -T (3.39) 

in which c;(O) = 1. Multiplying on the left by t/l~ and integrating over 
spatial co-ordinates, we obtain 

'h' <'1 "'P'I') [i(Ej - Ei)tJ 1 Cj = J..fl I exp h . (3.40) 

In order to solve this equation for cj we must make explicit the time 
dependence of _yt" from eqs. (3.34) and (3.29). For simplicity we shall also 
consider plane polarized radiation, and introduce a unit vector e to 
describe the direction of polarization so that Ao = Ao e. Writing 
(Ej - Ei)jh = Wj;' we have 

which has the solution, subject to ()O) = 0, 

e _ {I - ei(Wj,+W)'} 
()t) = <JI- e . p e- ,k

-
r li)Ao ~h----

m (W ji + w) 

e _ {I - ei(Wj,-W)'} 
+ <JI- e . p e,k

-
r li)Ao h )' (3.42) 

m (w ji - OJ 

Let us now consider the case of E j > E; so that in the transition i --> J 
we are dealing with an absorption process. We can ignore the first term in 
eq. (3.42) in comparison with the second because of its large denominator 
in the frequency region W ~ wj ; in which absorption will take place. This 
is called the rotating wave approximation (RWA). It is an excellent 
approximation in the optical region, and even at radio frequencies it is 
quite adequate for most purposes. Then 

1 _(t)12 = 1< -I!!...- ~. ik-r 1')12A2 sin
2 

{(wji - w)j2}t. (3.43) 
c) ] me pel 0 h2{(Wji _ W)j2}2 
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We must now examine the validityt of the way in which we want to 
apply eq. (3.43). In this section we are trying to find an expression. in terms 
of atomic properties. for the Einstein B coefficient which is defined by 
eq. (3.2). That equation is a so-called rale equalion. meaning that dN2/dl 
is independent of time or. in other words. that jc)IW is required to be 
linearly proportional to I. Equation (3.2) is also formulated in terms of a 
continuous distribution of frequencies. of energy density p(w) per unit 
frequency range. (It is the assumption of a continuous distribution of 
wij - W which is important for obtaining a rale of transition. and this 
may come about either because. as here. the frequency w of the radiation 
has a continuous range of values or because the difference in energy of the 
atomic levels. hWij. has a spread of values.) The derivation of eq. (3.43) 
has been carried through for a single frequency so far. and as it stands 
IC)IW increases as 12 at resonance and oscillates with time away from 
resonance. For our present application we are not interested in such 
solutions. and to obtain a constant transition rate IC)IWlt we need to 
deal with the frequency distribution of the incident radiation. 

So the next step is to sum over the monochromatic plane waves with 
which we started. eq. (3.29). Notice that we have delayed doing this until 
we have reached the stage of discussing probabilities rather than prob­
ability amplitudes because we assume that there is no phase relationship 
between incident waves of different frequencies. The energy per unit 
volume for each monochromatic wave is proportional to the mean square 
of the electric field which is expressed in terms of Ao through eq. (3.30): 

t £oE1; = 2£ow2A;i. (3.44) 
Summation in eq. (3.43) can therefore be carried out by replacing A;i by 
(1/2£0) (p(w)/w 2

) dw and integrating between limits w, and W 2 to cover 
a range of frequencies which includes the resonant frequency w ji . Then. 
dividing by I, we obtain a transition rate 

I . ()12/ - _2_ 1< '1 ~ ~. ik'r 1')12 fW

2 p(w) sin2{(wji - w}/2]t d 
C j t 1 - 2 } e pel 2 _)2 (I). 

£oh m w, W (Wji W 1 
(3.45) 

The integral in eq. (3.45) has the property that in the limit ollarge t it has 
the value 

IT p(wji ) 
Integral = - ---2-' 

2 (!) ji 

that is. the value of the function p( (t) )/(1)2 at the resonance frequency has 
been picked out. So the transition rate is 

(3.46) 

t See R. Loudon. The Quantum Theory 0/ LZqht. chapter 3. OUP. 1973. for a more 
extensive discussion of this topic. 
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3.2. Transition probabilities 

Having at last obtained this expression for the transition probability 
per unit time we ought to make several remarks about it. 

(a) We have used first-order perturbation theory to derive the result: 
this implies a low power input. The derivation would not have been valid 
for an intense laser beam, for example. 

(b) We have assumed that the atomic energy levels are infinitely sharp 
and that the perturbation is applied for a time long compared with the 
inverse of the bandwidth within which p(w) does not vary appreciably. 
If, however, a frequency width y is attributed to the spectral line because 
of spontaneous emission from the upper state, the result of eq. (3.46) 
would only be valid for yt « I. The problem arising in many modern 
experiments in laser spectroscopy, in which the bandwidth of the incident 
laser radiation is much less than the line width of the transition, would 
have to be treated by different methods because the above inequalities 
would not then be satisfied simultaneously. 

(c) The rate IcpWlt is just the same as P ab in eq. (3.6) so we can now 
equate Einstein's coefficient for absorption Bij directly to a factor in 
eq. (3.46): 

B - n 1< '1 e ~ ik· r I') 2 ij - ~ } -e· pe I I. 
eoft Wij m 

(3.47) 

(d) For non-degenerate levels, which we have assumed in our 
derivation, the relation Bij = Bji (the special case of eq. (3.14)) follows at 
once from the Hermitian property of the perturbation Yf '. This result 
is of great importance because it is an example of microscopic reversibility, 
the quantum-mechanical basis for the principle of detailed balancing 
which we used at a crucial point in the argument of section 3. I. 

( e) Because Yf' is linear in A its time-dependence is of the form eiwt 

(eq. (3.29) represents a particular Fourier component of the radiation 
field). This time-dependence has led to the result that IcP)1 2 It is only 
appreciable if energy is conserved in the form of the Bohr frequency 
condition flO) = E j - E;. 

(0 We have assumed one-electron atoms in this treatment. To deal 
with many-electron atoms we should have to sum over electrons, writing 
LiP; eik

' r, in eq. (3.46) where Pi is the momentum of the ith electron and 
r; is the space co-ordinate of the incident wave at the position of the ith 
electron. 

(g) Finally, the dependence of the transition rate on the spatial co­
ordinates of the atomic electron is through the square of the matrix 
element of the perturbation connecting the stationary states i and j: 

(3.48) 

Let us consider this matrix element at greater length because it is the 
quantity which determines the selection rules for a transition between the 
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Radiative transitions 

states i and}. The occurrence of this off-diagonal matrix element is related 
directly to the use of stationary states as the basis of the expansion (3.35) 
of the wave function for this problem. The total Hamiltonian is not 
diagonal in this representation, so the stationary states become mixed as a 
result of applying the radiation field, and the degree of admixture is 
described by the coefficients Cn which are proportional to such off-diagonal 
matrix elements. 

3.3. The electric dipole approximation 

We are now in a position to discuss further approximations in the matrix 
element (3.48). The spatial dependence of the incident wave is through the 
factore ik

' r in which the magnitude of the wave-vector k is 2np. For wave­
lengths large compared with the size of an atom the exponential may be 
expanded: 

eik . r = 1 + ik . r + ... (3.49) 

The first term leads to the electric dipole approximation of this muItipole 
expansion as we shall show. It is the dominant term in the optical region, 
for if ao/Z is taken as the size of an atom 

2n (10 

I. Z 
(10 (10 Z2 e2 7 
-- (E. - E) < --- . -- = Zr1 ~ - (3.50) 

Zhc J I Zhc 4neo(lo . 137 

and the approximation is a good one. It means that the amplitude of the 
wave is approximately constant over the size of the atom. Let us consider 
the electric vector polarized along the x-axis of the electronic co-ordinate 
system. Then we need an expression for <1IPxli). By an extension of eq. 
(2.74) we can write 

(3.51) 

for the unperturbed atom. Since yt 0 is Hermitian we have 

e i 
<11;; Pxli) = h (Ej - EJ<Jlexli), (3.52) 

and the atomic part of the problem is reduced to finding the matrix element 
between the stationary state i and J of a component of the electric dipole 
operator for the atom. Thus the transition probability per unit time 
that an atom has made a transition from state i to state J (both non­
degenerate) by absorption of electric dipole radiation of energy density 
p(w j ) per unit frequency range polarized in the x-direction is 
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3.3. The electric dipole approximation 

where hWji = E j - Ei , and for unpolarized radiation 

_ In. . 2 • 
P ab - "3 £Oh2 1<1 lerll) I p(w ji), un polarized (3.54) 

where 

IGI er li)12 = IGI ex 101 2 + IGI ey li)12 + IGI ez li)12. (3.55) 

As pointed out before, the same expression (3.53) or (3.54) applies to 
induced emission when the levels are non-degenerate. In this semi­
classical treatment the probability per unit time for spontaneous emission 
by electric dipole radiation has to be found from eq. (3.15), with eq. (3.54): 

1 4 W]i . . 2 
Aji = -4 . -3 . Iic31<1Ierll)1 unpolarized (3.56) 

n£o 

To find the order of magnitude of A we can put IGI er I i)12 ~ (eao)2 
for a transition allowed by electric dipole radiation, giving 

1 (eao)2 3 
A ~ - -- W (3.57) 

hc3 4m:o ' 

from which A ~ 108 S - 1 in the optical region. This corresponds to a 
typical lifetime of an excited state of r ~ 10 - 8 S against spontaneous 
decay by electric dipole radiation. Because of its strong frequency depen­
dence A is negligible at radiofrequencies. 

Let us now take up the case of degeneracy. First, suppose the lower level 
i is gi-fold degenerate. We shall assume that each non-degenerate state of i 
can be labelled by specifying an additional quantum number mi (we use 
the symbol m because we shall be concerned with degeneracy with respect 
to orientation in space). Then from the (non-degenerate) levelj there are a 
number of' channels' for decay to the level i, and 

1 4 OJ3 1 1 1 12 A'i = -- . - . ~ L G er im) . 
) 4n£0 3 hc3 m, 

(3.58) 

But if the upper level is also degenerate, with label mj , the rate of decay 
from each state j, mj is the same, a result which is intuitively reasonable 
but which formally depends on the crucial fact, which we quote, that 

L IGmjl er I imi )1 2 is independent of mj' (3.59) 
m, 

That is, having summed over spatial orientation, we have left no specified 
axis with which to distinguish physically different mj' Because of eq. (3.59) 
we can write 

1 4 OJ]i I' 1 I' 12 A ji = -4 . -3 . -h ,3 L <1m j er 1m) 
n£o (m, 

(3.60) 

for both) and i degenerate, and this is the same as eq. (3.58). 
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Radiative transitions 

Since eq. (3.60) does not have a symmetrical appearance with respect to 
mi and mj, another quantity has been defined. It is the line strength 

(3.61) 

which is symmetrical. In view of eq. (3.59) the summation over mj is 
merely a counting over the gj non-degenerate states of j and we therefore 
have the relation 

I 4 w3. S. 
A .. = ~-. -. ---1!.-. 2. 

JI 4n8 3 ne3 q. o , J 

(3.62) 

The total rate of loss of energy from an atom by spontaneous emission 
of un polarized electric dipole radiation at the frequency w ji is 

dW I 4 W~I'I 1'12 - ~ = A 'inw'i = ~- . - . -3 <J er I) 
dt J J 4n&0 3 e 

(3.63) 

which depends on WJi' Let us compare this expression with that for a 
classical electron oscillator obeying, in one dimension, the equation of 
motion 

x + yx + w6x = 0, (3.64) 

where Wo is the oscillation frequency and yx is a damping term represent­
ing a weak radiation reaction force. y has the value 

I 2 e2w~ 
y=~-.-. --

4n80 3 me3 (3.65) 

for an electron of mass m and charge - e. That y is small compared with 
Wo is shown by taking the ratio 

I e2 
nwo 3 

Y/W o ~ ~- - Wo = rx ~~- ~ rx 
4n&0 me3 me2 (3.66) 

where we have identified Wo with a radiation frequency typical of atoms in 
the optical region (nwo ~ e2/4n80Go). In this approximation. therefore. 
eq. (3.64) has a solution 

x = Xo e- yt
/
2 cos wot (3.67) 

and the energy of the oscillator is 

W(t) = !mx~ax ;::::; !mw6x6 e- yt = W(O) e- yt
. (3.68) 

This equation leads to a rate of loss of energy 

dW 1 1 e2 
4 2 = }' W ;::::; ~~ . ~ . :3 Wo Xo· 

dt 4n80 3 c 
(3.69) 
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3.3. The electric dipole approximation 

which is the same as the well-known fonnula 

d W I 2 e2---::z - - = - . - . - (x) 
dt 4n80 3 c3 (3.70) 

if one takes the mean square acceleration as (X)2 ~ ~x6w6 from eq. (3.67). 
We generalize eq. (3.69) to include three independent orthogonal oscil­
lators by writing Irl2 instead of x6, and in comparing this classical formula 
with eq. (3.63) we find 

(3.71 ) 

The factor 2 in this comparison between the classical electric dipole 
moment and the quantum mechanical dipole matrix element comes about 
because we wrote in eq. (3.67) x ex Xo cos wot rather than x ex x~ (eiroo

' + 
e - iroo') = 2x~ cos wot. Apart from this small point, the analogy is com­
plete at a single frequency. 

But in trying to make a model of a one-electron atom out of three 
classical oscillators (one for each direction of polarization) we do not 
take account of the fact that the atom can emit many frequencies w ji 
whereas the classical oscillators emit only one frequency. Each one­
dimensional oscillator has therefore to be endowed with an 'oscillator 
strength' - fji (fji is defined as a negative number for emission, positive 
for absorption) to indicate the fraction of the oscillator energy which is 
emitted into each channel, j -> i. In identifying eq. (3.69) with eq. (3.63) 

dW 
-Tt = Aji (hwjJ = yW (3.72) 

we write 

or 
Aji = -3yfji' (3.73) 

Equation (3.73) is one way of introducing the definition of the oscillator 
strength (see problem 3.4). With eq. (3.56) this leads to the expression 

2 mi. . 2 
fji = -3' e2' h21<JI erlz)1 hwji · (3.74) 

For absorption, the definition of fj is 

(3.75) 

sok is directly related to Einstein's B for absorption through eq. (3.14) 
and eq. (3.54): 

(3.76) 
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Finally, in terms of the line strength Si) 

2 m I I 
Ii) = -3 . 2 . ~.2 . - Sijhwij. 

e ft 9i 
(3.77) 

The classical oscillator has been discussed at some length because through 
it the idea of an oscillator strength has been introduced, and this latter 
quantity is important because it is the one traditionally used by spectro­
scopists to describe the relative intensities of spectral lines. From the way 
it has been introduced as a fraction one suspects that it is subject to a sum 
rule of the form L)Iij = I for absorption. This is in fact the case if i is the 
lowest level in a one-electron spectrum of levels. (For a proof see problem 
3.5.) If} is an excited state, emission to lower levels i as well as absorption 
to higher levels k can take place and the I-sum rule reads 

L (fji + fjk) = I (3.78) 
i.k 

where fji is a negative fraction. If Z electrons are responsible for the 
spectrum the sum, more generally, equals Z. 

The intensity of a spectral line in emission depends on the population 
of the excited state as well as on the transition probability. The assembly of 
atoms in the light source may be in thermal equilibrium, brought about by 
atomic collisions, in which case a temperature may be ascribed to the 
assembly and a Boltzmann distribution prevails. A condition often dis­
cussed theoretically is that of so-called natural excitation which corres­
ponds to thermal equilibrium at an infinite temperature so that all non­
degenerate states are equally populated. Another situation in a light 
source is that atoms are excited under bombardment by charged particles, 
mostly electrons, and the relative populations of excited states satisfy a 
Boltzmann distribution at a so-called electron temperature, Te, which may 
be of the order of 10,000 K or higher. Thus 

N 9 -.!.. = -.!.. e - (Ej - E,)/kT e 

Ni 9i 
(3.79) 

At Te = 104 OK, kTe - 2 x 10 14 Hz or about I eV, so excited atomic 
states are fairly well populated. In an absorption cell, on the other hand, 
in which atoms are in thermal equilibrium at, say, room temperature, 
T - 300 K and kT - 6 x 10 12 Hz, so that nearly all the atoms are in 
the ground state. In absorption spectra transitions from the ground state 
greatly predominate. 

3.4. Selection rules for I and m, 

We now discuss the detailed form of the electric dipole matrix elements 
for a one-electron atom. 
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3.4. Selection rules for I and m/ 

First of all, it is clear that in a stationary state of well-defined parity the 
expectation value of the electric dipole moment vanishes: 

<er) = e f P:1m,r P n1m, dT = 0 (3.80) 

because for a reflection of the co-ordinate system through the origin P 
has the sign of (_1)1, P*P does not change sign, but r does. (We ignore 
for the time being any degeneracy of states of opposite parity, assuming 
that this degeneracy has been removed.) The vanishing of <er) for a state 
of well-defined angular momentum also follows from the principle of 
invariance under time reversal, but the argument from this principle is 
more difficult. 

The selection rules for ml and I can be worked out directly with the use 
of hydrogenic wave functions. If we establish the z-axis as a physically 
preferred direction, for example by applying a magnetic field along the 
z-axis (Zeeman effect), thus lifting the degeneracy in m l , we can treat the 
rectangular components of r separately: 

(a) z = r cos 0: 

<n'l'm;lzlnlml) = N 100 

R:'l'rRnlr2 dr L' p,(!i* cos 0 P,[,' sin 0 dO 

J:" exp (im;4» exp (-iml4» d4> (3.81) 

where N is a normalization constant. From the 4>-dependence 

(b) x = r sin 0 cos 4>: 
omitting the rand 0 integrals, 

<n'l'm;lxlnlm1) x f" exp (im;4» cos 4> exp ( - im l4» d4> 

= ~ f" {exp [i(m; - ml + 1)4>] 

+ exp[i(m; - m l - 1)4>]} d4> 

= 0 unless m; = ml ± 1, 

with a similar expression for the y-component. 

(3.82) 

(3.83) 

Thus we obtain the polarization rules for electric dipole radiation: 
l'l.m1 = 0 for the electric vector parallelt to the magnetic field (n polari­

zation) ; 
l'l.m l = ± 1 for the electric vector perpendicular to the magnetic field 

(0" polarization). 

t These statements about the direction of the electric vector can be checked by looking 
back through eqs. (3.52). (3.42). and (3.30). 
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The selection rules for 1 follow from the O-dependence, but first we are 
able to state a very strict rule for states of well-defined parity: 

!J.l = odd. (3.84) 

This is based on the symmetry arguments about the parity of the states. 
The details of the O-dependence depend on recursion relations among the 
pr'. For the z-component 

(1- m l + l)pr~1 + (l + m)P'!"-1 
cos 0 pr' = ----

21 + I 
Since the pr' are orthogonal, 

J P'r' cos 0 pr' sin 0 dO = 0 unless l' = 1 ± I. 

Similarly, for the x- and y-components we use 
pm, _ pm, 

. ()pm,-I_ 1+1 I-I 
Sill I - 21 + I 

(3.85) 

(3.86) 

(3.87) 

to obtain the same rule l' = I ± I. Thus for electric dipole radiation 

!J.l=±I. (3.88) 

In spontaneous emISSIOn the relative intensities of lines which are 
allowed by the electric dipole selection rules are proportional to 

N j w 4 [f Rn'l'rRnlr2 drJ x F(!, m l , /" m;). 

The function F(l, m/o 1', m;) arising from the angular part can be worked 
out once and for all in the case of hydrogen and indeed in the more 
general case of the central-field approximation for many-electron atoms. 
The population of the emitting excited state, N j , depends on the details of 
excitation in the light source and on cascades in emission from higher 
states down to the state in question. The radial integral, in general, has to 
be worked out with a knowledge of radial wave functions, hence the 
importance of atomic theory applied, for example, to astrophysics. There 
are no selection rules for n, but clearly the value of the integral depends on 
the amount of overlap between the radial functions Rn'l' and R nl , especially 
in the outer parts of the atom because the integral is weighted by the 
factor r. This point is mentioned again in chapter 6 (see problem 6.1). 

Relative intensities in the Zeeman effect are discussed in more detail in 
chapter 8. 

3.5. Higher order radiation 

In the expansion of eik
." eq. (3.49), we have shown that the first term 

leads to the electric dipole approximation. Inclusion of the second term, 
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ik . r, in this multipole expansion leads to a description of magnetic 
dipole and electric quadrupole radiation, which we shall now briefly 
discuss. This term brings in the effect of retardation. 

In the matrix element of eq. (3.48) the electron momentum vector p is 
projected on to the direction of the amplitude of the vector potential Ao. 
Since for a transverse wave we have k . Ao = 0, we are concerned with 
those directions of p for which k . P = 0. Let us take the direction of k to 
be the x-axis of the electron co-ordinate system, and let us consider only 
that part of the interaction concerning the y-component of the electron 
momentum, P\"' We are then interested in the matrix element squared: 

I<jl ;py(l + ikxx) li>12 (3.89) 

In a formal sense there is a cross term to be dealt with in this square of a 
matrix element. But if I i> and Ij> are states of well-defined parity the 
first-order (electric dipole) operator connects only states of opposite 
parity while the second-order operator connects states of the same parity. 
So the cross term vanishes. In any case, from an observational point of 
view, we are only interested in the small second-order multipole operator 
when the large first order effect vanishes in accordance with some selection 
rule. This is called a forbidden transition. Thus we consider 

l

ew 12 01 i - ~ PyX Ii> 
mc 

(3.90) 

where we have put kx = w/c. 
The operator Py commutes with x, so we may write PyX = XPy and 

elaborate this operator as follows: 

XPy = 1(XP,. - PxY) + 1(XPy + PxY) 
= 1hlz + 1m(xy + xy) (3.91) 

where the first term is just the z-component of the orbital angular momen­
tum. Its contribution to the matrix element (3.90) is 

w
2
/ eh /2 ? <jl 2m Iz Ii> (3.92) 

But (eh/2m)/z is just tile .:-component of the magnetic dipole moment of 
the atom (or rather, the orbital part of it; see chapter 4), so we speak of 
this contribution of the second order multipole moment as magnetic 
dipole radiation: 

Magnetic dipole: (3.93) 

In the initial formulation of the radiation problem through eq. (3.25) we 
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omitted electron spin. Had we included it, we should have found that in 
lowest order it comes into the expression (3.93) in the form of the spin 
magnetic moment Ils z = gsllBsz (see chapter 4) added to the orbital 
magnetic moment. 

The second term of eq. (3.91) can be written 

i 
1m(xy + xy) = 1m h (X£oY - xy£o + £oxy - x£oy) 

1 i 
= 2m h (£oxy - xy£o)· (3.94) 

As in eq. (3.52) its contribution to the matrix element is 

Electric quadrupole: (3.95) 

where (Ej - EJjh = w. The operator in eq. (3.95) is a component of a 
second-rank tensor, the atomic electric quadrupole moment Q. Classically 
speaking, we see that, whereas the atomic electric dipole oscillates in 
phase with an incoming wave (no retardation), quadrupole radiation 
depends on the time of arrival of the electromagnetic disturbance at 
different parts of the electron charge distribution. Pure quadrupole 
radiation arises when two parts of the charge distribution are oscillating 
like electric dipoles out of phase so that the dipole contribution vanishes. 
Clearly for this kind of radiation to be important the wavelength of the 
incident wave must be comparable with the size of the charge distribution. 

From eq. (3.90) it seems reasonable that the probability of magnetic 
dipole radiation is of the same order of magnitude as that of electric 
quadrupole radiation, for the two effects were formulated together. We 
can demonstrate this explicitly by comparing each with electric dipole 
radiation at the same (optical) frequency. From eq. (3.52) the square 
of an electric dipole matrix element is of the order of w 2d; where 
de - eao is an atomic electric dipole moment. Similarly, we have for 
magnetic dipole, from eq. (3.93), (w 2Ie 2

){l2; and for electric quad­
rupole, from eq. (3.95), 

Now 
{lIe eh 1 
---·-=a· 
de me eao ' 

and 
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Problems 

So 

(3.96) 

and both magnetic dipole and electric quadrupole effects are greatly 
reduced relative to electric dipole by the same factor (1'2. Magnetic 
dipole radiation, particularly, is important in induced transitions between 
states of the same configuration in the radiofrequency region where 
spontaneous transitions are negligible and electric dipole transitions are 
forbidden (the states involved are of the same parity). The whole field of 
radiofrequency spectroscopy in its various forms depends on this process. 
Spontaneous magnetic dipole and electric quadrupole transitions are 
mainly important in the X-ray region where the wavelength is of the same 
order as the size of an atom. These transitions also provide a weak mode of 
decay in the optical region for states from which decay by electric dipole 
radiation is forbidden. The lifetimes of such states against decay by 
second-order multi pole radiation are correspondingly much longer than 
in the case of electric dipole radiation. 

We shall not have occasion to go into the selection rules for these higher 
order radiations in detail, but they are mentioned again in chapter 7 in 
connection with general rules for many-electron atoms. 

Problems 

(Those problems marked with an asterisk are more advanced.) 
3.1. Derive the formula (1)2 /n 2 c3 for the number of modes per unit volume 
per unit frequency range for electromagnetic radiation confined to a 
cubical box. 
3.2. Show that, with the gauge condition V . A = 0 (eq. 3.32)), p com­
mutes with A and hence p . A + A . P = 2A . p. 
3.3. Show that the term quadratic in A in the Hamiltonian of eq. (3.33) is 
small compared with the term linear in A for ordinary electric field 
strengths as follows: estimate the magnitude of A in terms of E from 
eq. (3.30) and use the approximation p ~ h/ao to show that (e/m)A· p 
is of the order of the interaction energy between an atomic dipole 
moment and the external field E. Then show that the quadratic term 
(e2/2m)A2 is less than the linear term by a factor E/{e/4:rc€oa~}, and 
interpret this result. 
3.4. Oscillator strengths occur in the elementary classical theory of the 
complex refractive index of a non-polar gas. To see the connection be­
tween this theory and that outlined in the text we consider the following 
problem. Let 

2 eEo . t 
X + YX + wijx = - - e'w 

m 
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be the equation of motion of a one-dimensional damped oscillator. of 
charge - e, mass m, resonance frequency (f)jj' driven by an alternating 
electric field of amplitude Eo and frequency (I). From the complex re­
fractive index of a rarified gas of N jj such oscillators per unit volume show 
that the absorption coefficient is, under sufficient approximation, 

ne2 y 
k· = N----::---""7 

I] 4nEomc I] (wij - w? + (y/2)2 

where k jj is the absorption coefficient defined for intensities I, proportional 
to E6, in the sense that an incident intensity 10 is reduced to Is = 10 e -k,jS 

after passing through a thickness s of the gas. If this model is to represent 
N one-electron atoms per unit volume each capable of absorption from 
the state i to many states j, we introduce the oscillator strength iij for 
absorption through 

where 

to indicate that only a fractionj;j of an oscillator's absorbing power is to 
be allocated to each channel i ---> j available to one atom. Summing over 
absorption channels we have 

where f;j appears as a simple weighting factor when the absorption co­
efficient is expressed in terms of N atoms rather than in terms of Nij 
oscillators. This expression is a sum of Lorentz curves of absorption 
versus frequency. Show that the frequency width of an absorption line at 
half the peak absorption is I'. 

Consider again just one absorption line i --> j. Let an incident plane 
wave of intensity 10 ((1) = p(w)c fall on the gas. The dimensions of the 
intensity are energy per unit frequency range crossing unit area per unit 
time; p((I) is the energy density per unit frequency range introduced in 
eq. (3.2). p( (I) is an isotropic energy density, and in the above definition we 
are speaking of the directed intensity of a collimated beam, not of the 
intensity defined as energy flux per unit solid anqle. When the sample of 
gas is 'optically thin', i.e .. kjjs is small. show that the intensity I, (w) after 
passing through a thickness s of gas is 
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We define the' equivalent width' w by integrating over all frequencies of 
the incident wave: 

f
oc lo(w) - I,(w) foo 

\l'= - dw=s kijdw 
o lo(w) 0 

where IX: kij dw is called the total absorption for the line i ----> j. Interpret 

the meaning of the term' equivalent width'. Show that 

Notice the important result that the area under the absorption curve is 
independent of y, and in general of the mechanism of broadening of the 
line. The broadening mechanism determines the shape of the line, not the 
area integrated over frequency. 

Show that if 10 «(1)) varies only slowly with frequency over the region of 
the absorption line the rate of loss of energy from the incident beam per 
unit volume of gas by absorption is just Np(w)Bijhwij-as in eq. (3.2~ 
provided that eq. (3.76) holds for the relation betweent;j and Bij. 

For further reading see, for example, A. C. G. Mitchell and M. W. 
Zeemansky, Resonance Radiation and Excited Atoms; H. G. Kuhn, 
Atomic spectra, Second Edition, sections II D, VII B, F. 
*3.5. Prove the f-sum rule for absorption as follows: consider the matrix 
element, eq. (3.52), 

e i 
<JI --;nPx Ii) = h (Ej - EJ <JI ex Ii). 

and use it to evaluate, by matrix multiplication, the diagonal matrix 
element of the commutator Pxx - xPx: 

The commutation relation pxx - XPx = - ih gives the result in the form 
of eq. (3.76) 

2 m I:3 . e2h2 (E j - EJ I<il er IJ)1 2 
= 1 

J 

which is the sum rule. 
*3.6. Use the Schrodinger hydrogenic wave functions for n = 1, I = 0, 
m l = ° and for n' = 2, r = 1, m; = 1,0, -1 to show that 

I 215 

1<2101:: 1100)12 = 2 1<21 ± II x ± iy 1100)12 = 316 a6· 
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Evaluate the Einstein A coefficient for the ls-2p transition (Lyman (J. 

line) and hence show that the lifetime of the 2p level against spontaneous 
decay by electric dipole radiation is r = 1·6 x 10- 9 s. (Be careful about 
the definition of A in terms of matrix elements when the upper level is 
degenerate. ) 

3.7. Given that the lifetime of the 2p level of hydrogen against decay by 
electric dipole radiation is r = 1.6 x 1O- 9 s. estimate the lifetime of the 
2p level of (a) hydrogen-like Ti21 +; (b) muonic titanium (see problem 
2.9). 

*3.8. Consider an atom subject to an electromagnetic field which is 
capable of inducing transitions between two of its states only-no other 
states are involved. Such a system is often called a two-level atom. Let 
these states p and q satisfy the Schrodinger equation (3.36) 

Yfo Ip) = Eplp); Yfolq) = Eqlq); 

so that the resonance frequency for transitions between them is 
(1)0 = (Eq - Ep)/h. Assume that the perturbation Yf'. representing the 
interaction with a monochromatic field offrequency w, has matrix elements 

(pI Yf' Iq) = hb e
iwt

; (ql Yf' Ip) = hb e-
iwt

; 

(pI Y{' Ip> = (ql ft' Iq) = O. 
This assumption reflects the rotating wave approximation: if the applied 
field has a time-dependence cos wI. only one rotating component is 
effective in inducing both absorption and induced emission. 

Spontaneous emission may be neglected if b » y where y is the fre­
quency width of the transition due to spontaneous emission. This condition 
may come about either because the radiation field is very intense. as in 
some laser experiments, or because y - I is long compared with the duration 
of the experiment. 

(a) Estimate, with the help of eq. (3.57), the values of y-I for a spon­
taneous magnetic dipole transition between two states whose frequency 
separation is 1.000 MHz. 

(b) Use eq. (3.38) to set up the following equations of motion for the 
amplitudes cp(t) and cq(t) (defined by eq. (3.35»: 

ie'l' = cqb e-i(Wo-W)t, 

ie"l = cpb ei(Wo-W)t. 

(c) Assuming that cp(O) = I, cq(O) = 0, solve these equations of 
motion exactly to show that the probability of transition to state q after 
a time I is 

I 1

2 (2b)2. 2 I 
Ppq = Cq(t) = Q2 sm :2 Qt, 

where Q2 = (wo - W)2 + (2b)2. This is often called the Rabi formula. 
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(d) At resonance P pq varies as sin 2 bl, hence b is called the Rabi flopping 
frequency. Show that, for the case of electric dipole radiation, 
b = deEo/2h where de is the atomic electric dipole matrix element and 
the applied field is EU) = cEo cos wt. Show that an analogous expression 
is obtained for magnetic dipole radiation. 

(e) In an atomic-beam magnetic-resonance experiment (see N. F. 
Ramsey, Molecular Beams, chapter V, O.U.P. 1956) an oscillating 
magnetic field is applied for a fixed time r (as experienced by atoms 
passing through the interaction region with a given speed). Show that 
there is an optimum value of b which maximises P pq and find this maximum 
value of P pq' 

(f) Show that the factor (2b)2/Q2 has a full frequency width at half­
maximum intensity of 4b. This effect is called power broadening. Discuss 
the difference between the exact treatment set out in this problem and the 
low-signal first-order solution of eq. (3.43). 

(g) Note that the expansion coefficients defined through eq. (3.35) 
could have been defined in a different way: 

in which the wave function !/In is independent of time and the factor 
e-iEntih has been absorbed in Cn(t). Show that the equations of motion 
replacing those of part (b) are now 

iC\ = CpEp/h + Cqb eiw1 

iC'q = CqEq/h + Cpb e- iWl
• 

The final answer for ICq (t)1 2 is the same as for icq u)j2 because Cq and cq 

differ only by a phase factor which does not matter in the result. 

*3.9. Consider again the two-level atom of problem 3.8 subject to a 
perturbation of Rabi flopping frequency b. In this problem we want to 
include the possibility of decay by spontaneous emission at a rate y from 
the upper state to the lower state. Let q be the upper and p the lower state. 

(a) Confirm that a plausible way of introducing this phenomenon is to 
replace the equations of motion (part (b) of problem 3.8) by 

icp = i(y/2)cq + cqb e-i(wo-w)t 

iCq = -i(Y/2)cq + cpb ei(wo-w)t, 

provided that \c "u)j2 departs very little from its initial value ic,,(O)1 2 = I 
(otherwise the normalisation condition icp(tW + icq(t)12 = I cannot be 
satisfied). We therefore treat these equations only by perturbation theory. 
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(b) Show that in first-order perturbation theory the probability of 
excitation of the state q after a time t is 

b2 

Ie (1)12 - !l - 2 e-(;'!2)t cos (wo - w)t + e-;·t]. 
q - (wo - W)2 + (y/2)2 ' 

This formula is valid for b « }'. 
As in the classical treatment (problem 3.4), the first factor in this 

formula is a Lorentzian function of frequency with width y. 
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4. The hydrogen atom: 
fine structure 

The Schr6dinger theory with which we have treated hydrogen so far is 
inadequate to explain certain details in the spectrum of hydrogen and of 
other simple atoms. We can quote three pieces of experimental spectro­
scopic evidence which historically gave rise to difficulty. These difficulties 
were resolved with the introduction of the concept of electron spin. 

4.1. Electron spin 

(a) The Stern-Gerlach experiment was first done by passing a highly 
collimated beam of silver atoms in vacuo through a region in which there 
is a strong gradient of magnetic field, oB/oz, in the z-direction transverse 
to the beam. (See problem 4.1.) If the atom has a magnetic moment Ji then 
there is a force on the atom of magnitude Jlz(oB/oz), and a transverse 
deflection of the beam may be observed in the plane of a detector. Classi­
cally, without space quantization, a continuous distribution of deflections 
would have been expected, but this is not what was observed. 

A single-electron atom has a magnetic moment associated with the 
orbital motion of the electron. Semi-classically the following expression is 
derived: 

(4.1) 

where i is the electron current in orbit, ds is an element of orbital path and 
ir x ds is an element of area. This becomes 

rL ds 
Jil = J"Zr x dt dq 

= _1_1 r x pdq, 
2mo J (4.2) 

where dq is an element of electron charge. But r x p is the orbital angular 
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momentum which is a constant of the motion, iii, so it may be taken out­
side the integral: 

I 
III = - hl( -e) 

2mo 

where - e is the total electron charge, or 

(4.3) 

(4.4) 

where PB = eh/2mo = 9·2732 x 10- 24 JT- 1 is the Bohr magneton. 
gl is simply a generalized constant of proportionality between III and 
- fLBI: for orbital motion gl = I. 

Now Pl
z 

= - glPBml where ml can take 21 + I values. Since I is integral, 
21 + I is odd. If the magnetic moment of an atom were associated only 
with orbital motion there would be an odd number of discrete traces in 
the deflection pattern of a Stern-Gerlach experiment. Stern and Gerlach 
confirmed the discrete nature of space quantization in a very direct 
manner, but for silver they found two traces symmetrically disposed on 
either side of the beam axis, with no undeflected trace. 

(b) The second piece of evidence also concerns space quantization, 
but this time in a spectroscopic transition: when a magnetic fieid is 
applied to a light source the resulting Zeeman effect in the spectral lines is 
in general the so-called 'anomalous' effect which, in contrast to the 
'normal' effect, cannot be understood in terms of orbital motion alone. 

(c) Thirdly, in the alkali metals many of the lines show a well-resolved 
doublet fine structure. For example, the well-known yellow D-Iines of 
sodium are a doublet with a separation of about 17 cm - 1. 

For all these reasons what appears to be needed is another quantum 
number for which the number of projections in space quantization is 
even. Uhlenbeck and Goudsmit postulated spin angular momentum 
empirically. (Historically their proposal came towards the end of a very 
fruitful period, up to 1924, during which the Old Quantum Theory was 
being refined, and just before the introduction of wave-mechanics and 
matrix-mechanics in 1925 and 1926.) 

In quantum mechanics we speak of spin angular momentum, hs. 
s operates on a spin eigenfunction X in a special space quite separate from 
co-ordinate space such that: 

(4.5) 

and 

(4.6) 

where s = t and ms = ±t only. Thus there are only two, i.e., (2s + 1), 
projections of s and associated with them only two normalized and 
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orthogonal eigenfunctions X( + ) and X( - ) defined by 

szX( +) = h( +) 

szX( -) = -h( -); 
x*( + )x( +) = X*( - )X( -) = I, 

X*( + )x( -) = x*( - )x( +) = o. 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

We introduce these spin functions here merely as functions on which the 
spin angular momentum operates. Formally they are playing the same 
role as the spherical harmonics played in eq. (2.68) and (2.69) for orbital 
angular momentum, but because of their double-valued nature they have 
rather special properties (see also problem 4.2). We shall need them later 
to give a quantum-mechanical description of a system which has spin. 

The spin s also obeys commutation rules of the form 

[sx, SyJ = isz (and cyclically), (4.11) 

rules which can be regarded as being part of the definition of an angular 
momentum operator (see appendix C). Notice that there is no integration 
in the normalization condition (4.9), and there is no approach to the 
classical limit in the sense that s ---> x because s is confined to the value 
t only. So spin is entirely a quantum-mechanical concept. It is not included 
naturally in the Schrodinger treatment but is provided for by Dirac's 
relativistic electron theory. 

Associated with the spin angular momentum is a spin magnetic moment, 
which by analogy with eq. (4.4) is 

Jis = -gsIlBS. 

According to Dirac the spin g-factor is 

gs = 2, 

(4.12) 

(4.13) 

(not I as for orbital motion) which is the value required for a quantitative 
fit to the spectroscopic data. 

If we stick to the Schrodinger treatment but modify it by the introduc­
tion of spin as an additional concept with no interaction between spin and 
orbit, we can form in this approximation a new wave function, including 
spin, which is separable in space and spin variables: 

(4.14) 

We now have four quantum numbers to describe a one-electon atom: 
n, I, m[ and ms. 

4.2. The interaction terms 

The fine structure of the energy levels of hydrogen is due to relativistic 
effects which are properly treated by the Dirac equation. But since the 
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effects are very small one can approximate the Dirac equation to the non­
relativistic case, using Schrodinger functions (4.14) as the zeroth-order 
functions in perturbation theory, and keeping only terms up to order 
v21c2 in an expansion of the IJirac Hamiltonian in powers of vic. In 
addition to the kinetic energy and Coulomb potential energy terms in the 
Schrodinger equation there are three small terms which can be treated by 
first-order perturbation theory. Since an investigation of the Dirac 
Hamiltonian is beyond the scope of this book we shall simply quote these 
terms. 

(a) The first term is 

This term does not contain spin, and can be arrived at by a modification of 
the Schrodinger Hamiltonian Yf 0 in a way which describes the relativistic 
variation of mass. 

The relativistic form of the total energy for a central field is 

.ff = (p2C 2 + mlc4 )1/2 + VCr) 

from which the kinetic energy Tis 

Ifwe write 

T = (p2C 2 + mlc4 )1/2 - moc2 

p2 I p4 
~----.~-+ 
~ 2mo 8 m6c2 

I p4 
= To -8 . m6c2 ... 

1 
- " .. - (En - V(r»)2. 

2moc2 

(4. I 5) 

(4. 16) 

(4.17) 

we obtain a modification to the non-relativistic kinetic energy To which 
is the same as the Dirac result to second order in vic. 

Using the Schrodinger functions to evaluate the energy shift in first­
order perturbation theory, we have 

(4.18) 
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Notice that the fact that there is degeneracy with respect to 1 in the zeroth­
order energy levels En is of no consequence here because the perturbation 
is itself diagonal in I. We can evaluate I1E~ using 

-1 I Z 
<r > = - .-, I (Z)2 

<r- 2> = (l + ~)n3 ao 

from table 2.3, and 

from eq. (2.57): 

n 2 ao 

Z2 e2 
En = - 4m;0 2n2 0

0 

I1E~ = - a:;2 En (~ - I : ~} (4.19) 

This term now depends on 1 as well as on n. It is smaller than En by a 
factor a 2Z 2 ~ V

2
/C

2
. 

(b) The next term is 

_I _ (~) 2s . (E x p). 
2moc2 2mo 

This term is spin-dependent. E is the electric field through which the 
electron is moving: E = - V¢ where ¢ = Ze/4neor or E = (lje)VV 
where V = - Ze2/4neo r. Since V = VCr) we can write an expreSSIOn 
which will serve for the more general case of a central field: 

Then 

lrdV 
E = ---. 

e r dr 

h2 1 dV 
= ----s·1 

2m~c2 r dr . 

(4.20) 

(4.21) 

From its form this term is called the spin-orbit interaction, and it arises 
from the relativistic motion (orbital) of an electron with spin through an 
electric field whose source is the nuclear charge. 

We can estimate the spin-orbit interaction with the electron spin, and 
its magnetic moment, introduced empirically into the non-relativistic 
theory. We add a magnetic interaction term as a perturbation: 

Yf' = -Jis . B, (4.22) 

where B is the magnetic field which the electron experiences as a result of 
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moving through the electric field E. 

I I 
B = -- E x v =- (E x p). 

c2 
lI1oC

2 
(4.23) 

Then, since Jl, = - 2/LBS, 

= 2 -~- ( C_h_) 2s . (E x p). (4.24) 
2moc2 2mo 

This is just twice as large as the Dirac term. The calculation is incomplete, 
however, because it has been conducted in the rest frame of the moving 
electron rather than in that of the central charge. The so-called Thomas 
precession is a relativistic kinematic effect which modifies eq. (4.24) by 
the addition of a term which happens to be -1 as large as the semi­
classical spin-orbit term, and thus brings agreement with the Dirac 
expressIOn. 

The first-order energy shift arising from the spin-orbit interaction is 

ll.E" = ~<~ dV s . 0. (4.25) 
2m6c2 r dr 'j 

1 dV Zc2 

,. d,. - 4m;;~·-3 
(4.26) 

and from table 2.3 

so 

Cf.2Z2 n 
ll.E" = ----;T En l(l + 1)(/ + 1) <s . I), 1-# O. (4.27) 

To maintain continuity in the exposition we shall anticipate the result, 
eq. (4.58), for <s . I): 

<s . I) = Hj(j + 1) - l(l + 1) - s(s + I)} (4.28) 

where s = 1 and} is a new quantum number describing the total angular 
momentum. The allowed values of} in this case are I ± 1. With eq. (4.28) 
for <s . J) we can combine eqs. (4.19) and (4.27) to give 

Cf.
2
Z2 {3 n} ll.E' + ll.E" = --2-En - - -. -1 ' } = I ± t 1-# O. (4.29) 

n 4} + 2. 
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(c) The third term is 

and it applies only to the special case of I = O. This case always gives 
difficulty because the wave function does not vanish at the origin. In many 
problems the electronic behaviour is then dominated by the region of very 
small r for which the non-relativistic approximation Ze2 j4nEor « m oc2 is 
very seriously violated. This third term is the so-called Darwin term which 
has no classical analogue. We now quote the energy shift derived from it 
(see problem 4.3): 

nh 2 Ze2 

AE'" = - 22 -1tf;(0)i2, ! = O. (4.30) 
2moc 4nEo 

The appearance of I tf;(0)1 2 in eq. (4.30) underlines the fact that this formula 
is only applicable to the case I = O. From eqs. (4.30) and (2.56) we obtain 

(1.2Z2 
AE'" = --2- Enn. 

n 
(4.31) 

Because the spin-orbit interaction does not apply when I = 0 we must 
put AE" = 0 for this case, and the total shift is AE' + AE"'; but for 
I =f. 0, AE'" = 0 and the total shift is AE' + AE". We can write a single 
formula, valid for all I, for the total shift AE: 

AE = AE' + AE" + AE'" = --- E - - -- , " = ! + -. (X2 Z2 (3 n) I 
n2 n 4 j + t· - 2 

(4.32) 

The right-hand side of this equation turns out to be the same as that of 
eq. (4.29), but now the total expression applies to all I, including I = O. 
Putting in the expression (2.57) for En we obtain the full dependence of the 
fine-structure energy shift on Z and n: 

AEn,j = (X2 ~1~ (4::
0

)2 ~; G -] : 1} (4.33) 

(X is called the fine-structure constant because it fixes the order of magni­
tude of AE relative to En «(1. - 1 ~7 and (1.2 - 5 x 10- 5). 

The Dirac equation for this problem can be solved exactly, and eq. (4.33) 
is the approximate form of the exact solution up to terms in u2 jc2

• 

In its fine structure, as in its gross structure, hydrogen is a special case, 
not at all typical of alkali atoms with one valence electron outside a core of 
spherically symmetrical shells. The most important feature in hydrogen is 
that the fine structure is so small that all three of the relativistic effects 
which we have quoted in this section have the same order of magnitude, 
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so they must all be treated together. For many-electron atoms we shall 
find that the spin-orbit effect (the second term here) emerges as the largest 
term and the other relativistic corrections can be ignored. The final result, 
eq. (4.33), does not depend on /, even though the three separate contribu­
tions do. (In the full relativistic treatment I is not a constant of the motion 
because we can say that there is a torque on it due to the spin, but in the 
zeroth-order wave functions which we have used for first-order perturba­
tion theory we treat I as a good quantum number.) Thus the degeneracy 
with respect to / in the gross structure is not lifted in the fine structure. 

GroSi Fine 
structure structure I j 

n=3 --=~:;;;::::¢==rl====:;::= 2 5/2 1,2 ~/2 
0·0361 cm-1 0·1082 cm- 1 

0,1 1/2 

n=2 

3/2 

0·365 cm- 1 

I........:. _______ ...l---'-_ 0,1 1/2 

I I 
(5) (4)(1) (3) (2) v-

O.329cm-=1 

Fig. 4.1. Fine structure of the n = 2 and n = 3 levels of hydrogen according to the 
Dirac theory, with the spectrum of allowed transitions. 

There is a splitting into levels labelled by differentj, but levels of the samej 
and different / for a given n coincide: EnV = / + !) = EnV = l' - !) 
where l' = / + 1. Figure 4.1 shows the fine structure of the n = 2 and 
n = 3 terms of hydrogen with the transitions which give rise to the fine 
structure of the Balmer line Ha according to the Dirac theory. The 
electric dipole selection rules for j, which we shall discuss in more detail 
later, are 

Aj = 0, ± 1. (4.34) 
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The structure of the n = 3 term is considerably smaller than that of 
n = 2 because AEn• j - AEn,/ ex n- 3

• We also see from eq. (4.33) that 
AEn, j ex Z4, so the fine structure for a given n increases rapidly along the 
iso-electronic sequence H, He + , Li + +, ... 

The main feature of Fig. 4.1 is the appearance of two strong compo­
nents, (1) and (2), separated approximately by the fine structure splitting 
of the n = 2 term, ~ 0·365 cm - 1. This structure is so small that resolu­
tion of the other components by optical methods is a difficult matter 
experimentally, especially so because the Doppler width in hydrogen is 
relatively large. We shall discuss the fine structure of H, further in section 
4.4. 

4.3. The vector model 

In this section, which will be useful for later work, we fill in the steps 
which led to eq. (4.28). In that equation (S . ) was treated as a small 
perturbation, where 

The total Hamiltonian is 

:If = :lfo + (S . ), (4.35) 

where 

h2 Ze 2 

:lfo = - - V2 - --. (4.36) 
2m 4nl:or 

The eigenfunctions of the zeroth-order Hamiltonian :lfo are product 
functions in space and spin because in zeroth order there is no interaction 
between spin and orbit: 

(4.37) 

For a given n these are all degenerate with respect to I, m l and m s , so we 
have to use degenerate perturbation theory (see appendix B). The neces­
sary step, namely that of finding a new representation in which the per­
turbation (S . ) is diagonal, is equivalent to finding the constants of the 
motion for the dynamical problem in which eq. (4.35) is the Hamiltonian. 
un, I, ml, ms is an eigenfunction of )2, s2, Iz , and Sz, that is, these operators 
commute with :lfo . With the perturbation added, 12 and S2 still commute 
with :If, but lz and Sz do not. (We are only concerned with an angular 
problem here. In first-order perturbation theory the radial function Rnl 

can be used to find the expectation value of the radial part of the operator 
< l/r . d V/dr). This is already implicit in (.) 

To investigate the constants of the motion we discuss the vector model 
which is a pictorial classical description of the behaviour of angular 
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momentum vectors. The classical equation of motion for the orbital 
angular momentum vector hi interacting with the spin hs is 

~ (hI) = ';5 X I 
dt 

(4.38) 

for there is a torque';5 x I acting on hI. On the other hand the quantum­
mechanical equation of motion, eq. (2.74), is 

:t <hI) = ~ <[hI, x]) (4.39) 

which can be extended to be an equation in the operators themselves, 
rather than in their expectation values: 

d I 
- (hI) = :-h [hI, x]. 
dt I 

(4.40) 

Let us work this out for the x-component of I. All the components of I 
commute with .ffo, so we only need 

(4.41 ) 

Remembering the commutation rules for I, 

(4.42) 

and the fact that Ix commutes with all components of 5 because these 
operators act in different spaces, we have 

:t (hlx) = - i';[/x, (s)y + s'[z)] 

- i';(is/z - is/,,) 

= ';(5 X I)x 

and similarly for Iy and Iz' so 

d 
dt (hI) = ';5 X I. 

(4.43) 

(4.44) 

But this is just the same as the classical equation (4.38) if the classical 
vectors replace the quantum-mechanical operators, so the vector model is 
a good description in this context. 

Because 5 obeys the commutation relations 

[sx' Sy] = isz (and cyclically) 

it has an equation of motion 
d 
- (h5) = ';1 x 5. 
dt 
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4.3. The vector model 

If we add eqs. (4.44) and (4.46) we form a new angular momentum 
operator, the total angular momentum 

hi = h(l + s) 

whose equation of motion is 

~ (hi) = ~s x I + ~I x s = O. 
dt 

(4.47) 

(4.48) 

In other words, j is a constant of the motion for the problem and it 
commutes with the Hamiltonian £'0 + ~s . I. This constant of the 
motion is just what we have set out to find. 

It can be verified that i, introduced here through eq. (4.47), obeys the 
commutation rules 

(4.49) 

and so, like I and s, it satisfies the rule for a quantum-mechanical angular 
momentum operator. 

The mechanics of the vector model are as follows: since I x I = 0 we 
can rewrite eq. (4.38) as 

d 
dt (hi) = ~(s + I) x 1 = ~j x I. (4.50) 

Similarly 

d . 
dt (hs) = ~J x s. (4.51 ) 

These two equations represent a classical precession of) and s about j with 
a precession frequency ill = I~jl/h, i.e., 

dl 
-=roxI. 
dt 

~I 
Fig. 4.2. The vector model representing I + s = j, with precession. 

(4.52) 

The vector addition 1 + s = j and the precession are represented in 
Fig. 4.2. The larger the magnitude of ~, which determines the energy of 
interaction in the perturbation term ~s . I, the faster the rate of precession 
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in the model because ill OC ~. Time averages in the vector model become 
equivalent to expectation values in quantum mechanics. Thus the lengths 
III, lsi, and Ijl are constant in the model (12, S2, and f commute with the 
Hamiltonian) but the projections Iz and Sz on a z-axis fixed in space 
fluctuate during the precessional motion (ms and ml are not good quantum 
numbers and un, l. m/. ms is not a good representation). The larger the per­
turbation ~s . I the more rapid the fluctuation and the worse the m[, ms 

representation. By contrast} and its projection mj are good quantum 
numbers-there is no external torque on the system as a whole arising 
from the interaction ~s . I which is internal to the atom. 

We now return to the problem of finding the first-order energy shift 
arising from the perturbation ~s ' I in degenerate perturbation theory. 
For the zeroth-order wave functions we have to use a representation in 
which s . I is diagonal. The functions Un. I. mi. ms will not do because s . I 
does not commute with Iz or Sz; but we can choose satisfactory zeroth­
order functions Vn. I. j. mj by forming certain linear combinations of the 
basis set un, I. mi. ms' The labels of Vn, I, j, m. indicate that these functions are 
simultaneous eigenfunctions ofl2 (and S2), j2 and}z. They are satisfactory 
because s . I commutes with 12 , S2, j2, and }z, i.e., s . I is diagonal in this 
representation. In the transformation from the m{> ms representation to 
the}, m j representation 

Vn , 1, j. m) = I. Un, 1, ml, msCm/, ms. j. mj 
mi. ms 

(4.53) 

or in Dirac notation 

In, I,}, mj ) = I In, I, ml , ms) <I, s, ml, ms II, S,}, m) (4.54) 

the coefficients <I, s, m[, ms II, s,}, mj) are called Clebsch-Gordan co­
efficients, and tables of them appear in more advanced books. In taking 
expectation values, however, we do not need to know what these co­
efficients are: we only use the fact that In, I,}, m j ) is an eigenfunction of 
12 , S2, j2, and}z. Thus 

(4.55) 
Now 

j2 = (I + s) . (I + s) = 12 + S2 + 2s ' I, (4.56) 

hence 

(4.57) 

Finally 

= ~ {j(j + 1) - 1(1 + 1) - s(s + I)}, (4.58) 
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4.4. The Lamb shift 

This is equivalent to the expression (4.28) for <s . I) which was used in 
evaluating 11£". Each level, labelled by j, is still (2j + I)-fold degenerate 
with respect to m j' Such a degeneracy could be lifted by the application of 
an external electric or magnetic field, an effect which we are not discussing 
in this chapter. 

We have gone into this derivation in some detail because similar 
problems arise again and again in the central-field approximation. 

4.4. The Lamb shift 

The Dirac scheme for the fine structure of hydrogen as illustrated in 
Fig. 4.1 does not quite agree with experiment. Levels with the same j but 
different I are not in fact quite coincident. The separations involved are 
extremely small: the largest separation is that between the 2S 1/2 and 
2p 1/2 levelst for a given n; for j > ! the separations are quite negligible. 
Lamb and Retherford! measured accurately by a radio frequency method 
the interval 22Pl/2-22S1/2 in hydrogen. In this difficult experiment 
extraordinary care was taken to achieve high precision, and many small 
corrections including, for example, the effect of unresolved hyperfine 
structure were taken into account. They found that the 22S 1/2 level lies 
above the 22 P1/2 level by an amount 1,057'77 ± 0·\0 MHz, or 0·035283 
cm - 1, which is only about one-tenth of the fine-structure splitting of the 
n = 2 term. This shift of the S-term is called a Lamb shift. 

The effect is explained in terms of the theory of quantum electro­
dynamics: in fact the development of the theory was greatly stimulated by 
the experimental measurements. Welton§ has given a qualitative explana­
tion of the Lamb shift as follows: a quantized radiation field has a zero­
point energy equivalent to a mean-square electric field so that even in a 
vacuum there are fluctuations in this zero-point radiation field. These 
fluctuations cause an electron to execute an oscillatory motion and its 
charge is therefore smeared out. If the electron is bound, as in hydrogen, 
by a non-uniform electric field it experiences a different potential from 
that appropriate to its mean position. Hence the atomic energy levels are 
shifted. The effect is greatest for s-electrons through a modification of 
1",(0)1 2

. (The same zero-point fluctuations may be regarded as being res­
ponsible for the process of spontaneous emission: a transition occurs 
through emission induced by the appropriate Fourier component of the 
zero point fluctuating field.) 

The theory gives 1057·888 ± 0·013 MHz for the 22 p 1/2 - 22 S 1;2 

Lamb shift in hydrogen. Agreement with the original experimental value, 
1057·77 ± 0·10 MHz, is very good but not perfect. More modern Lamb 
shift measurements have been made in the n = 1, 2, and 3 terms of 

t The notation for a level specifies the value of j as a subscript to the letter code for I. The 
superscript gives the so-called multiplicity of the term-here it is the value of 2s + 1. 

t W.E. Lamb and R. C. Retherford, Phys. Ret'. 72, 241,1947. 
§ T. A. Welton, Php'. Rev. 74, 1157, 1948. 
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hydrogen and deuterium, in He+, and in other hydrogen-like ions up to 
Ar 17 +. The best value of the five-structure constant itself was formerly 
taken to be that derived from Lamb's measurements of the Lamb shift 
and the matching interval ZSI/2 - 2P3 / 2 in the n = 2 term of deuterium. 
From the sum of these two measured intervals (equivalent to the fine­
structure interval 2P I2 - 2P3 ,z), y.- I was found to be 

y'-
I = 137·0365 ± 0·0012. (4.59) 

Precision measurements of y. and of Lamb shifts are of enormous im­
portance as tests of quantum electrodynamics, and there are continuing 
efforts to improve the measurementst and to investigate other methods of 
determining r:J. accurately. 

Quantum electrodynamics also leads to a modification of the Dirac 
value, qs = 2, for the electron-spin q-factor. The theory gives 

r:J. r:J.z 
qs = 2(1 + - - 0·328 - + ... ) 

2n n 2 

2 x 1·0011596 

2·0023192. 

Gross Fine 
structure structure 

n = 3 -=--=:"J~;::::=====;:t:===:::::;:::;:: 
2

0
5

/
2 

0.1082 cm-1 2P3/2 ; 
2
0 3/2 

n=2~ 

k'=======t?pFf====r=t=+=F 2S1/2 2" 
r1l2 

-'\. "-

t 
0·365 cm- 1 

I 

i 

0035 9cm-1 ! 

I j 
(5) (4) (1) 

""- r-'" 

(2a) 

,(3b)1 I 
(3a) (2b) 

2P3/2 

2S1I2 
2P1!2 

v-

(4.60) 

Fig. 4.3. Fine structure of the n = 2 and n = 3 levels of hydrogen including Lamb 
shift, with the spectrum of allowed transitions. 

t For a review of tests of quantum electrodynamics see. for example. the article by 
P. 1. Mohr in Atomic Phrsics. Vol. 5. p. 37, Plenum Press. 1977. 
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4.5. Summary of the hydrogen spectrum 

Measurements confirm this value, but for many purposes the approxima­
tion gs = 2·00 is adequate. 

Figure 4.3 shows the fine structure of the n = 2 and n = 3 levels of 
hydrogen, modified to take account of the Lamb shift. This structure has 
also been studied optically by Kuhn and Series.t With great difficulty 
they were able to resolve the components (3a) and (5), thus obtaining a 
measurement of the Lamb shift in the terms n = 2 and n = 3, but now­
adays the techniques of laser spectroscopyt allow more precise measure­
ments to be made in the optical region. 

4.5. Summary of the hydrogen spectrum 

Lest the many details which we have discussed so far obscure the general 
picture of the structure of the energy levels in hydrogen, we now sum­
marize the main theoretical results in tabular form. 

GROSS STRUCTURE: the Hamiltonian is J'f" = T + V(r); V(r) = -Le2/41Tt:or. 

Characteristics Remarks 

(a) The wave function is separable into radial 
and angular parts. 

(b) The angular constants of the motion are 
\2. S2. II' and s,. 

(c) The energy is a function of n only, and is 
proportional to Z2/n2 

There is degeneracy in m, and m,; 

and in I. 

(d) The electric dipole selection rules are 

M= ±I; 
/l,m, = 0, 1T polarization; 
/l,m, = ± I, (J polarization. 

FINE STRUCTURE: the Hamiltonian is J'f 
relativistic effects. 

Characteristics 
(a) .J't', = ~s . I is treated as a small perturba­

tion. 

(b) The angular constants of the motion are 
12, s2, j2, and jz, not lz' Szo 

(c) The corresponding zeroth-order wave 
functions in degenerate perturbation 
theory are In, I, j, m), not In, I, m" m,). 

(d) The first-order energy shifts are propor­
tional to ~. 

(e) The vector model pictures a precession 
of \ and s about j. 

Because V(r) is a central field. 

s and I are assumed not to interact with 
each other. 

<r- 1
) fixes the magnitude. 

No axis in space has been physically es­
tablished. 

Accidental degeneracy because V(r) has 
the special form Vex r-'. 

Change of parity. 

other 

Remarks 

sand \ are now interacting. 

There is a torque on s and on I but no 
torque on j. 

The perturbation does not mix up states 
of different j and m j; s . \ is diagonal in the 
In, I,j, m) representation. 

~ contains the radial part in the form 
<r- 3 ) for Vex r- l 

t H. G. Kuhn and G. W. Series. Proc. Rov. Soc. A202. 127. 1950. 
t See A. Corney. Atomic and Laser 5pectr~scopr. O.U.P .. 1977. for a detailed account of 

modern techniques. 
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The rate of precession is proportional to 
r 

(I) The fine structure is so small in hydrogen 
that other relativistic effects (£2) have 
to be treated at the same time. 

(g) The fine structure increases as Z4 in the 
iso-electronic sequence. 

(h) The fine structure depends on i but not 
on I for a given n (excluding the Lamb 
shift). 

(i) The electric dipole selection rule for i is 

!J,j = 0, ± I. 
0) Each levelj is (2i + I) - fold degenerate 

with respect to m j . 

Problems 

The hydrogen atom: fine structure 

Hence the rate of precession is linked with 
the energy splitting. 

The terms considered are of order v21e2 

(or Z2,,(2) compared with unity. 

The accidental degeneracy in I persists 
because VCr) '" ,-1 

No axis in space has been physically 
established. 

(Those problems marked with an asterisk are more advanced.) 
4.1. In a Stern-Gerlach experiment a well-collimated beam of silver 
atoms in their ground state eSli2) emerges from an oven inside which 
the atoms are in thermal equilibrium at temperature T. The beam enters a 
region, of length /, in which there is a strong magnetic field B and a 
gradient offield oB/oz perpendicular to the axis of the beam. After leaving 
this region the beam travels a further distance l' in a field-free region to a 
detector. Show that in the plane of the detector the deflection Sa of those 
atoms which had the most probable speed IX in the oven is 

S = + PB oB (/2 + 211') 
• - 4kT GZ ' 

where PB is the Bohr magneton. 
Evaluate Sa for T = \ AOO K, ?B/?:: = 300 Tm - 1, I = /' = 0·\ m. 

*4.2. The electron spin operator s can be written in matrix form in 
terms of the Pauli spin operator a = 2s where 

~ = x ~y=(+~ -~} 
1 (I). 1 (0) x(ms = 2) = 0' x(ms = -2) = \ . 

(a) Verify that these functions are eigenfunctions of S2 and Sz, and find 
the eigenvalues. 

(b) Show that not only does s satisfy the commutation relations for 
angular momentum but also 
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~; = ~; = ~; = 1 and ~x~y + ~}'~x = 0 (and cyclically). 

(c) Verify the relation 

(a . F)(O' . G) = F . G + 10' . F x G 



Problems 

where F and G are any two vector operators which commute with cr. 
Hence show that (5 . r)2 = ;tr2. 
4.3. From the expression 

h2 

---eE· V 
4m6c2 

for the Darwin term in the fine structure of hydrogen, derive by first-order 
perturbation theory the energy shift 

AE'" = ~ Ze
2 

1tf;(0)1 2 • 
2m6c24rrl;0 

which is eq. (4.30). Construct an energy level diagram. drawn to scale. to 
show separately the contributions AE', AE". and AE'" to the energy shift 
AE (eq. (4.32» for the n = 2 level of hydrogen. 

4.4. Estimate the Doppler width of the H, line. and compare it with the 
separations of the fine-structure components of the line (a) at 300 K. 
(b) at 20 K. 

4.5. Estimate the electrostatic potential energy of an electron at the surface 
of a proton and compare it with the rest energy of the electron. 
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5. Two-electron system 

So far we have treated the case of one electron in a potential field. In 
discussing the fine structure of hydrogen we quoted effective terms in the 
Hamiltonian of Schr6dinger's equation to describe an approximation, up 
to order V 2

/C
2

, to the relativistic effects which are properly treated by the 
Dirac equation. The Dirac equation for one electron in a Coulomb field 
can be solved exactly, but it is not known how to extend the exact treat­
ment to the case of more than one electron. 

As for the wave function we used first of all a spatial function; and 
when we came to consider spin-dependent terms in the Hamiltonian we 
built up a simple product of space and spin functions, eq. (4.37). We did 
this on the grounds that in zeroth order, i.e., in a non-relativistic approxi­
mation, there is no interaction between space and spin variables. It then 
turned out that, because of degeneracy with respect to ml and ms , we had 
to use a particular linear combination of such product functions to treat 
the spin--orbit interaction in first order of perturbation theory. 

In discussing the helium atom we shall now find that we must attach 
considerable importance to the way in which we build up the wave 
function to describe the system of a nucleus plus two electrons. Before we 
come to that we shall delineate the problem by discussing an approximate 
form for the Hamiltonian. 

For two electrons in a non-relativistic approximation we follow the 
procedure of writing down a Schr6dinger equation in which the Hamil­
tonian contains all the interaction terms we think might be important. 
These potential energy terms are written in a semi-classical form (an 
application of the correspondence principle). The problem is still ex­
tremely formidable, and a gross simplification is called for: this is achieved 
by omitting what are believed to be small terms. To clear the air, we shall 
now list the largest of the terms which we are going to leave out. 

If we give the labels I and 2 to the electrons whose distances from the 
nucleus are r, and r2 respectively we shall omit the following effective 
terms from the Hamiltonian: 
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(a) the spin-orbit interaction for electrons 1 and 2: ~ ,I, . s, + ~212 . S2; 

(b) The so-called spin-other-orbit interaction: (,I, . S2 + ~~12 . SI; 



5.1. Electrostatic interaction and exchange degeneracy 

(c) the spin-spin interaction, which has the classical form of a magnetic 
interaction between two magnetic moments associated with electron spin 
separated by a distance r 12 : 

¢" {SI ~ S2 _ 3(sl . f I2 )S(S2 . f I2)}; 

r l2 r l2 

(d) the magnetic orbit-orbit interaction: C'II . 12 , 

All the above terms are relativistic in origin and we have left only 
electrostatic effects in what can be called a non-relativistic Hamiltonian, 
which we shall now discuss. 

5.1. Electrostatic interaction and exchange degeneracy 

For two electrons under the approximation considered above, the 
Schrodinger equation is 

{ 
_ ~ V2 _ ~ V2 _ Ze

2 
_ ~ + e

2 
} I/J 

2m I 2m 2 4ncorl 4ncOr2 4nCOrl2 
EI/J. (5. I) 

or 

(5.2) 

where 

(5.3) 

and similarly for electron 2. with 

Yf' = e2j4ncOr 12 . (5.4) 

I/J is the wave function for the whole system. 
The terms (5.3) describe just the motion of each electron separately in 

the electrostatic field of the nucleus, and eq. (5.4) describes the electro­
static repulsion between the two electrons separated by a distance r12 . In 
the discussion of eq. (5.1), for which there are no spin-dependent terms in 
the Hamiltonian, we shall leave out all consideration of electron spin even 
in the wave function. That is, we shall assume that the wave function 
depends only on the space co-ordinates of the electrons relative to the 
nucleus. The omission of spin at this stage in no way falsifies the results we 
are about to obtain for the problem of the electrostatic interaction between 
two electrons with exchange degeneracy. It is somewhat simpler to analyse 
the problem without carrying spin wave functions all the way through. In 
section 5.4 we shall re-introduce the spin wave function and discuss its 
importance. The reader may then wish to consider how the discussion 
would have proceeded if we had included spin in the first place. 

We attempt a solution of eq. (5.1) by treating Yf' as a small perturbation: 
at least, this is the formal procedure we follow even though, as we shall 
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Two-electron system 

see, £' is not necessarily very small. In the zeroth approximation, then, 
eq. (5.2) becomes 

(5.5) 

In this approximation electrons I and 2 do not interact and we achieve 
separability of the wave function t/lo. Since £1 and £2 from eq. (5.3) 
describe just a hydrogen problem for each electron separately, we can 
write 

t/lo = un1m,(r l ) Un'l'm,,(r2 ), (5.6) 

where 

£1 un1m,(rd = Enun1m,(rd (5.7) 

and 

£2 Un'l'm,,(r2 ) = En'I'm,,(r2 ), (5.8) 

with 

Eo = En + En" (5.9) 

In eqs. (5.7) and (5.8) En and En' are hydrogenic eigenvalues of energy, 
and their sum is the eigenvalue of eq. (5.5). We now abbreviate the nota­
tion: let the label a stand for the set of quantum numbers n, I, m l , and b 
for the set n', 1', m/, with a =I- b. Then eq. (5.6) reads 

(5.\0) 

with 

(5.11 ) 

We have labelled the two electrons I and 2, meaning that electron I has 
the co-ordinates r l , 0 1 , 4>1 in a co-ordinate system whose origin is the 
nucleus, and similarly for electron 2. But these two electrons are identical 
in the context of the particular Hamiltonian we are using, that is, they 
have the same charge and mass. This property presents no difficulties 
if the electrons are so far apart that they can be thought of as classical 
particles. We could label them any time we please by virtue of their 
positions in space, that is, by measuring their positions subject to the 
limitations of the Uncertainty Principle. The classical situation is the 
limiting case in which the spatial distribution of each electron charge is, 
and continues to be, well localized relative to the separation of the 
electrons. The Hamiltonian in eq. (5.1) is invariant under an exchange of 
labels I and 2 as it must be both classically and quantum mechanically for 
identical electrons. Yet for the classical situation we .:ould say that the 
electron which has position vector r l is in state a in the central field 
(eq. (5.7» while the other electron is in state b (eq. (5.8». Then the state 
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5.1. Electrostatic interaction and exchange degeneracy 

of the combined system of two independent electrons in a central field is 
expressed as the product ua(l) ub(2) (eq. (5.10». However, in an actual 
helium atom the electrons are sufficiently close together that their charge 
distributions overlap for much of the time. In this situation the identity of 
the particles leads to a loss of distinction between the two labels r 1 and r 2 

in the sense that the uncertainty principle takes on an over-riding impor­
tance in any attempt to measure the positions of the electrons. We must 
therefore consider another solution to eq. (5.5) with the same energy as the 
solution (5.10): 

(5.12) 

with 

(5.13) 

The existence of two functions ua(l)ub(2) and ub(l)ua(2), differing only 
in an exchange of the electron labels and having the same energy, is a case 
of degeneracy: so-called exchange degeneracy. We say that this system is 
degenerate with respect to exchange of electron labels. We are led to 
conclude that the use of the two simple product functions (5.10) and (5.12) 
to describe the helium problem implies far too classical a view of the 
matter because the two states of the system are actually indistinguishable 
with respect to these labels. In other words this representation by product 
functions is a poor one for describing indistinguishable states of over­
lapping charge clouds; rather. we need a new representation which takes 
account of indistinguishability. This new representation will be expressed 
in terms of linear combinations of the old product functions; and it turns 
out that the particular linear combinations which are needed will appear 
in a treatment of Yf' = e2 /47[eor 12 as a perturbation which lifts the 
exchange degeneracy. 

The infinite square matrix of the perturbation Yf' has. in general, 
matrix elements connecting all pairs of states of the same parity. since 
Yf' is an even-parity operator. But most of these pairs of states are not 
degenerate with each other and the matrix elements of Yf' between them 
do not contribute to an energy shift in a first-order perturbation treatment 
(they contribute only in higher order. and we shall be able to neglect them). 
The remaining sets of pairs of degenerate states. ua ( I) ub(2) and ub ( I )ua(2). 
may be used to label the rows and columns of separate 2 x 2 sub-matrices 
of Yf' arranged along the diagonal of the complete matrix. In this section 
we shall diagonalize one of these sub-matrices of the perturbation Yf' 

to find the energy shifts and wave functions. and we shall discuss the 
physical consequences afterwards. [This is in contrast to the method of 
section 4.3 in which we found on physical grounds the constants of the 
motion.j and m j • with which to label a representation (nljm) in which the 
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perturbations· I was diagonal. In that case we did not find the coefficients 
in the expansion of the new functions Inljrn) in terms of the old Inlrn[m,), 
nor were we interested in doing so at the time.] 

For convenience in what follows we abbreviate the notation further by 
writing 

ua(l) ub(2) = Uab 

Ub( I ) ua(2) = Uba 
(5.14) 

in which the label a or b for the quantum state occupied by electron 1 is 
always written first. With the wave functions Uab and Uba the sub-matrix of 
/If' = e2 /4n80 r 12 has four elements: 

diagonal: 

off-diagonal: 

.# {I = f U:b·ff'Uab dr, 

.ffZ2 = f u~aYf'uba dr; 

'#{2 = f u:b·ff'uba dr, 

)'1Z1 = f u~aYf'uab dT. 

These elements form a 2 x 2 sub-matrix 

similarly 

.ff;2 = fPb(l)Pa(2) drl dr 2 . 

4n80 r12 

(5.15) 

(5.16) 

(5.17) 

(5.18) 

(5.19) 

(5.20) 

These integrals represent just a classical repulsion energy for two electro­
static charge distributions of charge densities Pa and Pb' Interchanging 
labels I and 2 makes no difference to the integral, so 

.Yf{ 1 = Yf22 = J (say). (5.21 ) 

J is called the direct integral. Also 

'#{2 = '#21 = K(say). (5.22) 

K is called the exchange integral: it is a quantum-mechanical interference 
term. 
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5.1. Electrostatic interaction and exchange degeneracy 

In order to diagonalize the sub-matrix of £' we form new zeroth-order 
wave functions which are linear combinations of the old functions. We 
write 

(5.23) 

with 

(5.24) 

The functions U are still (two-fold degenerate) eigenfunctions of the 
zeroth-order Hamiltonian £0' with energy Eo, as in eq. (5.5) whatever 
the values of ('1 and ('2' but now C1 and C2 are to be chosen in such a way 
that £' also has only diagonal sub-matrix elements in the new rep­
resentation. This is achieved as follows: in the exact eq. (5.2) we write, 
as an approximation, 

If; = U + ~U (5.25) 

where ~U is the first-order correction to U brought about by the mixing 
into U of other states with energy #Eo on account of the perturbation 
X'. With E = Eo + ~E, where ~E is the first-order energy shift, eq. 
(5.2) becomes, to first order, 

(£0 + .# ')U + £o~U = (Eo + ~E)U + Eo~U. (5.26) 

Subtracting eq. (5.5) we get 

.#'U + £o~U = ~EU + Eo~U. (5.27) 

We now multiply on the left by u:b and ut, in turn and integrate over all 
space. Taking account of the fact that the wave functions contained in 
~U are orthogonal to Uab and Uba we obtain the pair of equations 

(5.28) 

(5.29) 

Equations (5.28) and (5.29) are a pair of simultaneous equations in the 
coefficients C1 and C2' To avoid the trivial solution C 1 = C2 = 0 we require 
the condition 

(5.30) 

Equation (5.30) is called the secular equation for the problem. From it are 
derived two solutions for the energy shift ~E arising from the perturba­
tion. In the present case, using eq. (5.21) and (5.22), we have 

1
1 - ~E K 1=0 

K 1 - ~E 
(5.31) 
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which gives 

AE = J ± K. (5.32) 

Associated with each energy shift there is a wave function U satisfying 
eg. (5.27). In anticipation we give them the names Us associated with 
AE = J +- K and UA associated with AE = J - K. To express Us and 
UA in terms of Uab and Uba we evaluate e l and ez for the two cases AE = 
J ± K from eg. (5.28): 

AE = J + K; 

whence 

Fromeg.(5.24)wefind 1('ll z = tand we choose the phase ('I 

Thus 

For AE = J - K, 

(J - K)e; = Je'l + Ke~, 
whence 

e~ -e;. 

(5.33) 

(5.34) 

+(2)-12. 

(5.35) 

(5.36) 

(5.37) 

Again we choose the phase e'l = +(2)-I/Z, so e~ 

UA = (2)-I/z (uab - uba ). 

- (2) -I/Z and 

(5.38) 

Thus we have found the two functions Us and UA which diagonalize the 
perturbation eZ /41[eo r 12' (It may easily be verified that 

f U; (e2/41fEor12) UA dT = 0.) 

Us remains unchanged on exchange of electron labels I and 2. whereas 
UA changes sign. Us is said to be symmetric and UA anti-symmetric with 
respect to exchange, hence the choice of symbol for the subscript. 

We might have argued from the beginning that a definite symmetry 
under exchange of labels is just the property that is needed for zeroth­
order wave functions, degenerate with respect to exchange, which are to 
describe indistinguishable states. We can introduce an abstract operator 
which represents exchange of labels. If, more generally, t/J(r I ... rirj .•. ) 

is a wave function for a many-electron system, the operator Pij is defined 
by 

(5.39) 
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Then 
P5I/J(r 1 ... rl j •.• ) = PijtjJ(r l •.• r/ i ••. ) 

= tjJ(r 1 •.. rir j ••. ) (5.40) 

and p;] has the eigenvalue 1. Any function is an eigenfunction of Pi}' But 
those functions which are eigenfunctions of Pij itself, with eigenvalues 
± 1, are the particular ones which have a definite symmetry with respect to 
exchange. We have found that for two electrons Us and UA are the eigen­
functions of P 12 with eigenvalues + 1 and - I respectively: 

(5.41) 

whereas Uab and Uba do not satisfy such eigenvalue equations. The impor­
tance of this symmetry classification lies in the fact that P 12 commutes 
with the total Hamiltonian of eq. (5.2): therefore P 12 represents a constant 
of the motion. It is the very operator whose eigenfunctions describe satis­
factorily a degenerate system of indistinguishable states and which at the 
same time diagonalize the perturbation e2 /41[l:o r 12 and hence solve the 
two-electron problem in perturbation theory when exchange degeneracy 
is present. This is analogous to the previous example of section 4.3, that of 
diagonalizing the matrix of s . I: Y and J" representing constants of the 
motion, provided the labels J and mj for the new representation (lsJm) 
which diagonalized s . I. 

A state of definite exchange symmetry keeps that symmetry in time. 
Even when the Hamiltonian is extended to include interaction with a 
radiation field one cannot have electromagnetic transitions between 
symmetric and anti-symmetric states because the multipole-moment 
operators are symmetrical with respect to exchange. For example, an 

electric dipole moment matrix element would be f U~(erl + er2 )UA d-r. 

This whole matrix element is anti-symmetric with respect to exchange, 
and since exchange of labels cannot affect the value of the integral we 
must have 

Hence we have the rule that electromagnetic transitions between sym­
metric and anti-symmetric states in co-ordinate space are forbidden (in 
the approximation that interactions between electron spin and orbital 
motion are neglected). 

5.2. The ground state of helium 

Before we discuss the energy spectrum of the two-electron system III 

general from eq. (5.32), we shall examine the ground state of helium. 
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In the zeroth approximation, eq. (5.5), the electrons do not interact and 
the energy is given by eq. (5.9) with the electrons labelled by n 1 = I, 
11 = 0, mil = 0, n z = I, Iz = 0, ml, = 0. This corresponds to a hydro­
genic ground state for each single-electron problem separately. The con­
figuration is written lsz. The labels a and b of the last section are therefore 
equal, and from eq. (5.38) 

U A vanishes. 

We have only the symmetric function ua(l)ui2) = U1s(l)Uls(2) which is 
non-degenerate with respect to exchange. The unperturbed energy is 

(5.43) 

where, since En :x. ZZ and Z = 2, E(1s) = -4 Rydbergs ~ -54,4 eV. 
Hence E(lsZ) ~ - 108·8 eV. That is, the work required to strip two elec­
trons from neutral helium in its unperturbed ground state is just twice the 
ionization potential of He +, which is a hydrogenic ion with Z = 2 (see 
Fig. 5.1). 

-108·8 eV 

I 

I 

He ls2unperturbed 

I 

I 

He++ 

-54·4 eV 

-20'4eV 
t 

/He ls 2first order 

-24'58 eV 

/ 
He ls2 ground state 

Fig. 5.1. Energy level diagram for He, showing the theoretical position of the ground 
state, both unperturbed and perturbed in first order, and the actual position of the 

ground state relative to the ionization limits He+ ls and He+ +. 

The term e2/4nso r 12 can be treated by non-degenerate perturbation 
theory since the unperturbed state u 1,(1)U 1,(2) is non-degenerate with 
respect to II' mil' Iz and ml ,. In first order the energy shift is a direct 
integral of the form of eq. (5.19) for which the result is (see problem 5.3) 
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This result would make the ionization potential of neutral helium 54·4 -
34 = 20·4 eV. A variational procedure gives a better result (see problem 
5.2). Much more exact numerical calculations give agreement with the 
experimental value of 24·580 eV. The discrepancy of 14 per cent between 
the first-order perturbation result and the correct ionization potential is 
not surprising since the perturbation can hardly be regarded as small (an 
energy shift of 34 eV out of a total energy of 108·8 eV). These results are 
summarized in Fig. 5.1. 

5.3. The excited states of helium 

From eqs. (5.11) and (5.32) we have the energy of an excited state of 
helium measured from the ionization limit of He+, i.e., from the state of 
the He+ + ion: 

E = En, + Enz + 1 ± K. (5.45) 

Since excitation of two electrons is rare, and in helium would give energy 
levels above the ionization limit of the neutral atom, in order to discuss 
the discrete levels we consider one of the electrons to be labelled by Is and 
we subtract from eq. (5.45) the energy E 1s' Then for the configuration 
Isnl we have the energy 

E = En + 1 ± K (5.46) 
where now the energy is measured relative to the ionization limit of the 
neutral atom (the ground state of He+). In this lowest approximationt the 
unperturbed energy En can be regarded as being (a) shifted by the direct 
integral 

l(Is; nl) = <Is; nlle2j4neorulls; nl>. 

and (b) split by the exchange integral 

K(Is; nl) = (Is; nIl e2j4neor12 Inl; Is>. 

(5.47) 

(5.48) 

This is illustrated in Fig. 5.2. The upper and lower signs in eq. (5.46) belong 
to the symmetric and anti-symmetric states respectively. 

--,---- Us 

/+k ---- + • \-K 
i I I '---'---- UA 

I 

J 

1 
Direct Exchange 

En-----

Unperturbed Perturbed 

Fig. 5.2. Schematic energy level diagram for an excited state of He, showing the effect 
of the direct and exchange integrals. 

t See problem 5.5. 
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The effect of the direct integral is to cancel out part of the central 
attraction of the nuclear charge. Another way of looking at this is in terms 
of screening. Since the Is electron has a charge distribution which is on 
the average close to the nucleus (we therefore call the Is electron the 
inner electron), and the nl electron (the outer electron) has its charge dis­
tribution further out, the inner electron screens the nuclear charge from 
the outer electron. This screening is more and more complete for large 
nand f, and in this case it would be a good approximation to rewrite the 
potential energy terms in the Hamiltonian, not with the mutual inter­
action e2/4n:co r 12' but in the effective form 

(5.49) 

which expresses the fact that the inner electron sees the full nuclear 
charge Ze and the outer electron sees an effectively screened nuclear 
charge (Z - I )e. According to this approximation the energy levels of 
neutral helium would be hydrogen-like (for large nand /) with an effective 
nuclear charge of I. One can see how close this approximation is from the 
data of table 5.1. 

The direct coulomb interaction e2 /4n:cor 12 raises the degeneracy in I 

Table 5.1. Energy levels in helium 

Configuration Term Helium singlet- hydrogenic 
-£ em-I triplet -£ em-I 

difference. em - I 

152 
3S missing 
IS 198,311 

109,678 

Is2s 
3S 38,461 

6,422 IS 32,039 

Is2p 
3p 29,230 

2,048 Ip 27,182 

27,419 

105305 
3S 15,080 

1,628 IS 13.452 

Is3p 
3p 12,752 

645 Ip 12.1 07 
12,186 

Is3d 
30 12.215 

3 10 12.212 

lo54s 
3S 8,019 

643 IS 7,376 

lo54p 
3p 7,100 

276 Ip 6,824 

Is4d 
30 6,872 

2 10 6,870 

6,854 

Is4{ 
3F 6,864'4 

0·6 IF 6,863'8 
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because the amount of screening depends on the eccentricity of the orbit of 
the outer electron. For example, for n = 2 in helium the Is2pconfiguration 
lies about 7,000 cm -1 above the Is2s configuration instead of being 
degenerate with it (see Fig. 5.3 and table 5.1). 

- E (cm-~ Helium Hydrogenic 
O.-~ls~n~s ____ ~l~s~n~ ____ l~s~n~d ____ ~ls~n~f __ r-~n~ ____ _ 

10,000 

20,000 

50,000 

100,000 

109,678 

150,000 

198,311 

1,3F= 
=1,3p -1,3D 

_1p ____ _ 
-3 _1S ............ P .... 

-Js 

/ _1S 

/ 
/ 

/ 
/ 

/ 

/ 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

/ 

5-
4-
3-

2-

I 1-

Fig. 5.3. Energy level diagram for helium. For comparison the hydrogenic levels are 
shown on the right. 
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We shall go into the question of the constants of the motion in general 
for a two-electron system later (chapter 7). For the moment we want to 
clarify the labelling of the terms in helium. The total orbital angular 
momentum L formed by the vector addition L = I, + 12 becomes 
L = I for the Isnl configuration of helium because I, = 0 and 12 = I. 
Even in the more general case of a configuration n,/" n2/2 L2 and L z 

would represent constants of the motion under the action of the perturba­
tion e2/4neor 12 because this interaction is internal to the atom and there is 
no torque on the total orbital angular momentum (in the absence of inter­
action with electron spin): that is e2/4neor 12 commutes with U and L z . 

The exchange operator P 12 also commutes with U and L z . The terms, 
now non-degenerate in L = I, are labelled by the code letter for total 
orbital angular momentum. 

The exchange integral K (eq. (5.48» is always positive. Therefore, 
from eq. (5.46), the anti-symmetric state lies below the symmetric state 
for a given configuration. The anti-symmetric states are called triplets 
and the symmetric states are called singlets, a nomenclature having to do 
with the eigenfunctions of electron spin which are discussed in the next 
section. This designation is indicated by a superscript, e.g., 3p, 1 P. It is 
very apparent from table 5.1 how the singlet-triplet energy difference falls 
off as n and I increase. This is because the exchange integral K( Is; n/) is a 
measure of the amount of overlap between the unperturbed radial func­
tions R(ls) and R(n/), which are just the hydrogenic functions illustrated 
in Fig. 2.1. Since the overlap between the Is function and the nl function 
becomes negligible for large n and I, eq. (5.49) well describes the classical 
limit of screening without exchange. 

The way in which the exchange phenomenon affects the energy levels 
is hard to understand at first, because the actual term in the Hamiltonian 
which we are considering e2/4neor 12' represents just a classical repulsive 
force between the two electrons. But a particular choice of wave functions. 
symmetric and anti-symmetric with respect to exchange. has' been forced 
on us in recognition of the fact that the electron charge clouds overlap, 
although we persist in labelling them as if they did not. It is in the use of 
these wave functions to find the expectation value of e2/4neof 12 that the 
quantum-mechanical interference effect arises and so affects the energy 
levels through the exchange integral. 

5.4. Electron spin functions and the Pauli exclusion principle 

Provided there is no interaction between spin and co-ordinates, the 
zeroth-order single-electron functions are separable in space co-ordinates 
and spin. We can write combined space and spin functions as a product 

(5.50) 
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where the label (I) refers to electron number one. X ± (1) are the eigen­
functionsofsTands lz with eigenvalues SI(SI + I) = iandmsl = ±!. 

For two electrons we have in this representation products of spin 
functions X ± (I)x ± (2), of which there are four possibilities corresponding 
to the four possible combinations of m

SI 
= ± t m

S2 
= ± i. These 

product functions do not have a definite symmetry with respect to ex­
change. We can adopt a new representation in which the functions are 
simultaneous eigenfunctions of the square of the total spin angular 
momentum SZ = (SI + sz)2, with eigenvalue S(S + 1), and of its projec­
tion Sz = Sl

z 
+ S2 z' with eigenvalue Ms. At the same time these new 

functions have definite symmetry with respect to exchange. They are 
normalized linear combinations of the old product functions: 

and 

1.+ (1 )x + (2), 

XS = (2)-I/Z{X+(I)X_(2) + x-(l)x+(2)}, 

x-(l)x_(2): 

(5.51 ) 

(5.52) 

For the three functions XS of eq. (5.51) which are symmetric with respect 
to exchange one can verify that S = I and M s = I, 0, - I. These func­
tions form a triplet, triply degenerate with respect to Ms in the absence of 
a physically established axis in space. The function XA of eq. (5.52) is a 
singlet function, anti-symmetric with respect to exchange, and correspond­
ing to S = 0, Ms = 0. (The operators S2 and Sz commute with the 
Hamiltonian of eq. (5.2) and also with the exchange operator P12, which 
accounts for the fact that S2 and Sz represent constants of the motion 
and that their eigenfunctions also have a definite exchange symmetry.) 

Now we can combine the two spin functions 1.s and XA with the two 
co-ordinate functions Us and UA of eqs. (5.35) and (5.38) in a representa­
tion (LM L: SMs). The Hamiltonian of eg. (5.2) which describes the 
electrostatic interactions does not operate on the spin functions. and 
so electron spin does not enter directly in a description of the structure 
of electrostatic energy levels which we have discussed so far in this 
chapter. 

But when we consider the combined functions UsXs, UAXA, and USXA, 
U AXS a new result of extreme importance emerges. The first pair of 
functions 

(5.53) 
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are totally symmetric with respect to exchange in co-ordinates and spin 
while the second pair 

./, _ VSXA 
'l'A -

VAXs 
(5.54) 

are totally anti-symmetric. In section 5.1 we stated the relatively weak 
rule that electromagnetic transitions between states Vs and V A are for­
bidden-weak, because of the qualification that spin-dependent inter­
actions were neglected. Now we state the rule, due originally to Heisenberg 
and Dirac, that transitions between totally symmetric and totally anti­
symmetric states tIts and t/t A are not allowed for any process whatever. 
In fact it appears that there are two kinds of particles: bosons, which have 
integral spin and are described by totally symmetric functions of the kind 
t/ts; and fermions, which have half-integral spin and are described by 
totally anti-symmetric functions of the kind t/t A- Different kinds of 
quantum statistics are used to describe assemblies of the two kinds of 
particles. 

Confining our discussion to electrons. which are fermions, we find that 
one way of expressing the Pauli exclusion principle is that for electrons, 
only functions which are totally anti-symmetric with respect to exchange in 
co-ordinates and spin are allowed. Thus for two electrons the functions 
Vs, symmetric in co-ordinate space, are associated only with XA and are 
therefore singlets, while the functions VA' anti-symmetric in co-ordinate 
space, are triplets. We are now in a position to see what quantum statistics 
has to say about the non-relativistic helium problem. It is simply this: 
that both sets of states V SXA and V AXS actual(v exist. If, say, we had been 
dealing with the hypothetical case in which the two valence particles 
were identical bosons of spin zero, the calculation of energies including 
exchange integrals would have proceeded as in section 5.3, but those levels 
associated with VA would not have existed. 

We mention here, in passing, a fairly obvious selectIOn rule for the 
total spin quantum number S. When there is assumed to be no interaction 
between spin and orbit S is a good quantum number. The operators for 
electric multipole moments do not operate on the spin functions, so in the 
coupled representation (LM L; SMs) matrix elements of electric multipole 
moments taken between spin functions of different S, i.e., between XA and 
Xs, vanish because the spin functions XA and XS are orthogonal. Therefore 

I1S = O. (5.55) 

This rule forbids transItions between the singlet and triplet terms in 
helium, but in this case it adds nothing new because under the same 
approximation it corresponds to the rule V s -+ V A in co-ordinate space. 
We have already derived the latter rule, eq. (5.42), from considerations of 
exchange symmetry in co-ordinate space alone when there is no inter­
action between spin and orbit. Also from consideration of exchange 
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symmetry in co-ordinate space we found (eq. (5.38)) that the term Is2 3S is 
missing. The triplet term of lowest energy is Is2s 3S (see Fig. 5.3) and this 
term is metastable, that is, it is an excited state but it cannot decay to a 
lower energy state by radiation. In the present approximation it has an 
infinite lifetime like the ground state. (The singlet term Is2s 1S is also 
metastable, but for different reasons not connected with exchange sym­
metry. We shall discuss selection rules in general later.) The two systems 
of energy levels in helium, singlet and triplet, corresponding to symmetric 
and anti-symmetric co-ordinate states Us and UA respectively, used to be 
called para- and ortho-helium. To the extent that radiative transitions 
between them are forbidden they can be regarded as quite separate. The 
fact that the ground state belongs to the singlet system but that both 
systems are excited in a discharge tube is due to collisions involving spin­
dependent forces. 

Spin-dependent terms in the Hamiltonian give rise to fine structure in 
the triplet terms of helium. We shall not discuss this now, but shall return 
to it later (chapter 7). 

We have discussed the character of the energy levels in a two-electron 
system, under electrostatic forces only, by considering exchange sym­
metry in co-ordinate space only, not in spin space. Alternatively, one 
could state the Pauli exclusion principle (which includes spin) as a funda­
mental principle, and arrive at the conclusion that the same two co­
ordinate functions Us and UA are the ones which are required to describe 
the energy levels. The exclusion principle is needed to establish the 
existence of the levels associated with Us and U A' and in the case of three 
or more electrons it is vital for determining the allowed states of the 
system. We have treated the two-electron system in the manner already 
presented in this chapter in order to bring out clearly the dependence of 
the energy on electrostatic integrals. 

5.5. The periodic system 

In general, for N non-interacting electrons with no spin-orbit interaction 
we find it convenient to go back to the single-particle representation in 
which n, I, m l and ms are specified for each electron. The wave functions 
which are products of co-ordinate and spin functions (eq. (5.50)) are called 
single-particle functions or spin-orbitals. We shall now write them 

(5.56) 

where the subscript :x stands for the set of four quantum numbers n, I, m l , 

m,. In this representation the exclusion principle may be stated in its 
original form: no two electrons in an atom may be labelled by the same set 
of four quantum numbers n, I, m l , ms. In terms of the co-ordinate labels 
only, one may say: not more than two electrons can have the same set of 
three quantum numbers n, I, ml (then two electrons which have the same 
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n, I, m l must have different m" +t and -t). Electrons which have the 
same n, 1 are called equivalent electrons. Thus not more than 2(21 + I) 
electrons can be equivalent to each other because for a given 1 there are 
21 + I possible values of ml, with two possible values of ms. The relation 
between Pauli's exclusion principle and the more general symmetry 
principle of Heisenberg and Dirac is as follows: we require a normalized 
linear combination of products of single-particle functions t/t,(l)t/t p(2) ... 
t/tv(N) for N non-interacting electrons constructed in such a way that the 
total function is totally anti-symmetric with respect to exchange of elec­
trons. Slater showed that a determinant satisfies this requirement: 

t/t,(J) t/t,(2) 

t/t p(l) t/t p(2) 

t/tv(N) I 
I , 

(5.57) 

This form guarantees that t/t A = 0 if any pair of sets of four single-electron 
quantum numbers are equal, e.g., if!Y. = p. 

For two electrons eq. (5.57) becomes 

t/t = (2)-I/zlt/t,(J) t/t,(2) I = (2)-IZft/t (J)t/t (2) - t/t (l)t/t (2)}. 
A t/t (I) t/t (2) l, p p, 

p p (5.58) 

Of course, since we are back in the n, /, m[> ms representation it is not 
necessarily true that eq. (5.58) as it stands is an eigenfunction of SZ and 
Sz and of L Z and L z in the coupled representation LM LSM s in which, for 
example, we described the helium problem with SI + Sz = Sand 11 = 0, 
Iz = L. We should have to construct linear combinations of determinan­
tal product functions to achieve this. For example, the particular linear 
combination which gives V AXS where 

VA = (2)-I,Z{ua(1 )ub(2) - ub(l)ua(2)} 

and XS = (2)-I/Z{X+(l)X_(2) + x-(l)x+(2)} corresponding to S = I, 
Ms = 0 from eq. (5.51) is 

VAXS(S = 1, Ms = 0) = (2)-IZ {(2)-1,zIUa (l)X+(l) Ua(2)X+(2)1 
Ub(J)x-(J) ub(2)X_(2) 

+ (2)-l;ZIUa (l)x-(1) Ua(2)X-(2)1} (5.59) 
U h( I)X + (I) uh(2)x + (2) 

This can easily be verified by writing out the determinants and rearranging 
the terms in the sum. However, we shall not have occasion now to go into 
complicated details of this kind. We give this example to illustrate the 
importance of realizing which one of various representations is being 
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used in the description of a problem, that is to say which variables are 
being chosen to specify the constants of the motion in a given approxima­
tion. 

The classification of the elements by shellst of single electrons of given 
n, I to form a periodic system depends on the exclusion principle. A know­
ledge of the ordering of the configurations assigned to the ground states 
of elements as a function of Z depends on detailed calculation of the 
energy, which involves investigation of radial behaviour. At the beginning 
of the periodic table the electrons each have the lowest n consistent with 
the exclusion principle; for a given n they have the lowest I. This is the 
behaviour expected of weakly interacting electrons. 

The labels of the whole array of a determinantal product function such 
as eq. (5.57) are fixed if just the labels of the diagonal elements are speci­
fied. Thus there is a convenient short-hand notation for a configuration of 
equivalent electrons. For a given n, I the values of m l , are written out in 
line and above each is written + or - corresponding to ms , = ±l For 
example, one of the many possibilities for three equivalent 4d electrons is 

+ - + 
{2 - 2 -I]. The normalization factor (6)-1/2 can be written in front of the 
curly bracket, and the relative phase of a wave function is given by the 
property of a determinant on exchange of rows or columns: for example 

+ + - + + 
{2-2- I] = -{-22- I]. (5.60) 

For equivalent electrons the exclusion principle states that no two pairs 
of symbols m l , ms may be the same. For helium, Z = 2, the two electrons 
can have n = 1 and I = 0, that is the configuration 152 with determinantal 
state 

+ -
152

; {OO}. 

For the ground state of lithium, Z = 3, there is no room for the third 
electron in the Is shell and it must occupy the next shell, 25, which becomes 
closed at Z = 4, beryllium. Beginning at Z = 5 the 2p shell becomes 
occupied by the fifth electron: the configuration of the ground state of 
boron is Is22s22p. We can proceed with this book-keeping and find how 
many electrons a p-shell can accommodate. It is best systematically to 
keep M s, which is the algebraic sum Li m s" as large as possible, and for a 
given M s to maximize M L = Li m l ,. In this way we find that only six 
electrons can fit into a p-shell, and the wave function is 

+ + + - -
npo ; {I 0 - 1 1 0 - 1 ] . 

t There is some confusion about the use of the word 'shell'. The word appears in the 
general expression 'shell-structure'. Sometimes it is used specifically to denote a set of 
electrons of given n, in which case electrons of given n, t occupy a sub-shell. This is also the 
nomenclature of X-ray spectroscopy: the K-, L-, M-, and N-shells correspond to n = 
1,2,3,4. We shall use the word to describe electrons of given n, t. The closed-shell configura­
tion of a rare gas marks the end of a period. 
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For a closed p-shell, therefore, the maximum value of Ms equals zero, 
similarly M L(max) = 0, corresponding to S = 0, L = ° which describes 
a I S term with no resultant orbital or spin angular momentum. 

All closed shells give rise to IS terms. In particular the rare gases are 
very stable, for it turns out that an additional electron has to go into the 
next shell of higher n, forming an alkali atom. In the non-interacting 
particle approximation this valence electron is much less tightly bound. 

The first departure from the ordering according to the lowest value of n 
occurs at Z = 19. The configuration of argon at Z = 18 is Is22s22p6 3s23p6. 

The 3p shell is closed, but the 3d shell is still empty. However, the next 
electron added does not begin the 3d shell, with lowest possible nand 
relatively large I, but goes into the 4s shell with larger n but small I. The 
argon core effectively screens the nuclear charge from a 3d electron, but 
such is the penetration of the core by a 4s electron that the latter is more 
tightly bound and the alkali configuration with a 4s valence electron is 
energetically preferred. The appearance of the 3d electron in a ground 
configuration is deferred until scandium, Z = 21, which has the ground 
configuration Is22s22p6 3s23p64s23d. The way in which the ordering 
depends on nand / has been described by an empirical rule: shells are 
filled in order of increasing n + /, and for a given n + I in order of 
. . 
mcreasmg n. 

Configurations of the kind ndX(n + I )S2 or ndx + I(n + I)s occur for 
n = 3,4, and S in the periodic table. As x increases the d-shell is filled up. 
These three sets of transition elements are called the iron, palladium, and 
platinum groups respectively. On ionization they tend first to lose their 
s-electrons, so that as ions they have incomplete d-shells. This is re­
sponsible in particular for their paramagnetic behaviour. A similar filling 
of a so-called' inner' shell occurs in the rare-earths which have configura­
tions of the kind 4JSS2 Sp6 6s2 or sometimes 4f - ISS2 Sp 6 Sd6s2. Analogous 
to the rare-earths are the elements, beginning with actinium, in which the 
Sfshell is filling up. In this paragraph we have examples of the competition 
between different configurations for the ground state of an element. 
In these cases the competing configurations usually differ in electrons 
having the same n + I. For example, 4f(n + / = 4 + 3 = 7) competes 
with Sd(n + I = S + 2 = 7). If the one configuration describes the 
ground state the other will be found as a low-lying excited state. 

Indeed, in Ni (Z = 28) the term 3d94s 3D lies so close to the ground 
term 3d84s2 3F that their separation is less than the fine structure splitting 
of each, which extends over about 2,000 cm -I (see Fig. S.4). Furthermore, 
the two configurations have the same parity so very little meaning can be 
attached to the phrase' ground configuration' in this case, for there will 
be strong mixing of the two configurations through the electrostatic 
interaction between electrons. 

In contrast to these examples of competition for the ground state in 
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which one of the competing electrons has I ~ 2, the rare gases all have 
configurations of the type np6. They end a period in which the np-shell 
has been filled up in strict order of increasing Z, and their first excited 
states np5(n + l)s as well as their ionization limits lie relatively high in 
energy above their ground states. 
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Fig. 5.4. Terms of low-lying configurations in Ni. 

In conclusion, let it be said that the student will obtain much greater 
benefit from studying a table of ground configurations (see appendix D) 
than from reading a prolonged description of the periodic table. 

Problems 

5.1. Electric-dipole transitions between terms of the lsnl configurations 
in helium satisfy the selection rules /).S = 0, /).L = ± 1. Indicate all the 
allowed transitions between the terms shown in Fig. 5.3. (In view of the 
rule /).S = 0 it is convenient to construct two separate energy-level 
diagrams, one for the triplets and one for the singlets and to draw in the 
transitions on each separately.) With the help of table 5.1 calculate the 
wavenumber (cm- l

) and wavelength (A) of the transition ls2 lS_ 
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Is2p 1 P. Which transitions give rise to the red line, 6,678 A, to the yellow, 
5,875 A, and to the near ultraviolet line, 3,888 A? In particular, which of 
these belong to the singlet, and which to the triplet spectrum? Which 
terms are metastable, and what are their excitation energies in eV? Will a 
bulb of helium gas at room temperature give rise to an absorption spec­
trum in the visible when illuminated with white light? 
5.2. Find the ionization potential of a helium-like atom by a variation 
procedure, as follows: 

(a) Assume that the wave function for the Isz ground configuration is 
a product, N e- U

' e- U1
, of hydrogen-like Is functions, where N is a 

normalization constant, r1 and rz are the distances from the nucleus to 
the two electrons and a is a parameter to be determined by the variation 
method. (a is Z'/ao where Z' is an effective nuclear charge, not the 
nuclear charge Z itself.) Show that N = ':I. 3 /n from the normalization 
condition 

(b) Show that the average kinetic energy of each electron is (h z /2m)a z, 
and that the average potential energy of each electron in the field of the 
nucleus is - Ze2a/4nco. 

(c) Show that the average energy (e2/4nc Or 1Z ) of mutual repulsion 
between the two electrons is iae2/4nco as follows: evaluate the electro­
static potential <p(r) at radius r due to the spherically symmetrical charge 
density 

of electron 2. (Answer: <p(r) = (-e/4ncor)(1 -(I + ':I.r)e- zu ).) 
Then find the average potential energy of electron 1, whose charge density 
also varies exponentially with radius, in the electrostatic field of electron 2. 

(d) From (b) and (c) set up the average of the total energy (:it) of the 
two-electron atom and minimize it with respect to a by putting d (,#')/da = 
O. Hence evaluate a( = Z'/ao) in terms of Z. Evaluate (.Yf')min' This is the 
variation procedure. 

(e) (:it)min is the energy of the Is2 ground state of He rehtive to He+ +. 
Subtract from it the energy of the ground state of He + t( find the ioniza­
tion potential of He. Express the result in Rydbergs and .n eV, and com­
pare with the experimental value of 1·81 Rydbergs. The extension of this 
treatment to Li +, Be + + , etc., is straightforward. 
5.3. Find the ionization potential of a helium-like atom by first-order 
perturbation theory, where the zeroth-order Hamiltonian is 

94 



Problems 

and the perturbation is yt' = e2 /4nEOr 12' The zeroth-order wave function 
for the I S2 ground state is 

that is, it is a product of true hydrogenic Is functions in which the nuclear 
charge Z appears, rather than the screened charge Z' of problem 5.2. The 
evaluation of <e2 jr I2> proceeds as in problem 5.2(c), with Z' replaced by 
Z. Compare the result with that found by the variation method in prob­
lem 5.2 and with the experimental result. 
5.4. For the 3p 5 configuration of CI write down the determinantal 
product function for which Ms is a maximum and, subject to this con­
dition, M L is also a maximum. What term (S, L) does this correspond to? 
Verify that these values of Sand L are the same as for the ground term 
of A!. 
*5.5. Consider a helium-like ion in which the nuclear charge is Z. In this 
problem we estimate the energy of the excited state II s; nl), for I =1= 0, 
by treating e2 /4nEor 12 as a perturbation in first order without exchange. 
The result which we are to evaluate is E = En + J (eq. (5.46)) measured 
relative to the Is ground state of the corresponding hydrogen-like ion, 
where En is a zeroth-order energy for the nl electron and J is the direct 
integral given by eq. (5.47). 

Assume that the unperturbed wave function is a product of unscreened 
hydrogen-like wave functions 

ud l ) = RIJZ, rl)ygWI<PI)' 

un1 (2) = Rn1(Z, r 2 )y1mW 2 <P2)' 

(a) Write down an expression for En' 
To evaluate the perturbation energy !1E = J from the integral 

4nEo J = ff[U 1J2 dr l [Un1 [2 dr2 
e2 r 12 

we use formulae which occur later in the book. We expand l/r I2 : 

I 00 rk 
- = L k:1 Pdcosw) (eq. (7.10» 
r l2 k=O r> 

where r < is the lesser of r I and r 2' r> is the greater and w is the angle 
between [I and [2' We separate the co-ordinates by eq. (9.50) 

I rk 4n k 

-.-= L k:12k+1 L (-I)QYk-Q(81<PI)YZ(82<P2)' 
'12 k=Or> q=-k 

We can now deal with the angular integrations in J: 
(b) Show by means of a qualitative argument that since electron I has 

I = 0 there is only one term in the sum over k, namely k = O. 
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(c) Show that the direct integral reduces to the radial integral 

4;ru;() _ I~ IX 2 ..2. I 
--2 J - RI ,(Z. II )11 dl l - R~/(Z. 1"2 )I"~ dl"2 

C () () r> 

which is a Slater integral, FO (see p. 115). 
(d) The notation in (c) means that 

Show that, for I i= 0, to a certain approximation the first term :::::: 0 and 
the second term :::::: <1"- I ),,/. 

(e) Hence. show that the final energy is approximately 

Z2 2Z 
E = - - - +-- Rydbergs. 

1/2 1/ 2 

(f) Comment on the adequacy of first-order perturbation theory in this 
calculation, particularly for Z = 2, and contrast the method with that 
using the effective potential of eq. (5.49). 

(g) Calculate the direct integral (part (d» with hydrogen-like functions 
for the level I s2p, and compare the result with the approximate answer 
of part (e), with the answer derived from eq. (5.49) and with the experi­
mental result (table 5.1). 
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6. The central-field approximation 

We have treated in some detail the electrostatic interactions for a two­
electron atom. We now generalize the Schrodinger equation (5.1) for two 
electrons to describe the electrostatic interactions for N electrons: 

(6. I) 

in which the mutual repulsion term is summed over all pairs of electrons. 
The presence of this two-electron operator prevents an immediate 
separation of the wave function into one-electron functions. Furthermore 
the mutual r!!pulsion is in general too large to be treated as a perturbation, 
that is. the zeroth-order approximation in which Li> j e2 /41T£ol"ij is 
neglected is not at all realistic (see Fig. 6.1 a). 

The procedure is to regroup the terms in the Hamiltonian of eq. (6.1) in 
a physically more significant way. 

6.1. The central field 

The strong effect of the attractive potential terms Li (-7 e2/41T£ol";) is 
considerably reduced by the central part of the repulsive terms 
Li> j e2/41T£Orij' that is by the part of Li > j e2/41T£Orij representing a force 
on an electron directed away from the central charge Ze. We have already 
seen in chapter 5 that this partial cancellation is manifested as a screening. 
from the outer electrons. of the central charge by the inner electrons. 
Let the central part of Li> j e 2/41T£Orij be assumed to be Li S(r;). Then 
the total central potential is Li ( - Ze2/41T£ori + S(ri» which we shall call 
Li V(r;); Li> j e2/41T£Orij - Li S(r;) is left over. We now rewrite the 
Hamiltonian of eq. (6.1): 

(6.2) 

where 

(6.3) 
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and 

(6.4) 

Now we hope that £1 « £0' and that perturbation theory can be applied: 
the justification for this hope is to be found in the successful applications. 
The contrast between the use of (a) V = Li ( _7('2 /4rr<'orJ and (b) V = 
Li U(rJ as the zeroth-order potential is shown qualitatively in Fig. 6.1. 

Unperturbed Perturbed 

1=== 

1» 

(a) 

Unperturbed 

----,======= t-----

Perturbed 

+ H, of eq.(6·4) 

(b) 

Fig. 6.1. Schematic energy level diagram, contrasting the use of (a) - L.iZe2 /4rrcof, and 
(b) 'DU(f) as zeroth-order potentials. 

In the zeroth approximation we neglect £1 in comparison with £0 
(this is the central field approximation) and we have to solve 

£01/1 = I (-~ V? + u(rJ) 1/1 = EI/I. 
i 2m 

(6.5) 

Since we have assumed that £0 is of the form Li £Oi' 1/1 is separable into 
a product of single-electron functions, or rather into the form of a Slater 
determinant (to satisfy the requirement of anti-symmetry), and the total 
energy is the sum of single-electron energy eigenvalues: 

(6.6) 

Thus, for each electron 

( - ;~ V 2 + U(r)) I/Inlm[ms = En, I I/Inlm[ms , (6,7) 

Equation (6.7) is the same as for hydrogen, except that the more general 
('('ntra/~ficld potential U(r) replaces -7('2/4rrC:or and hence the energy 
depends on n and I; but the wave functions Vln1m[m, are still degenerate with 
respect to m l and m" In view of the central-field approximation the 
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t/lnlmlm,. are separable into radiaL angular. and spin parts: 

(6.8) 

Since the angular part is the same as for hydrogen the discussion of 
angular momenta given in chapters 2 and 4 applies equally well here. 

In this approximation the total wave function describes a configuration 
of electrons, by which is meant that the good quantum numbers ni and Ii 
are specified for each electron. It is clear that the Ii are good quantum 
numbers because classically the electrons are each moving independently 
round a centre of attraction and their orbital angular momenta are 
separately constants of the motion. 

The chief assumptions so far are that U(r) is spherically symmetrical 
and that eq. (6.7) in which U(r) appears is the same for all the electrons of 
a many-electron atom. The problem that remains is to solve a radial 
equation of the form of eq. (2.37) in which U(r) is not yet known. The 
method of attack is due to Hartree and is called the self-consistent field 
method. We shall only give an outline of this method here. 

First a reasonable guess is made for the spherically symmetrical 
potential U(rk ) for the kth electron. As we have assumed already, the kth 
electron is regarded as moving in a potential produced by the nuclear 
charge and by the charges of all the other electrons. The radial part of 
eq. (6.7) is solved numerically for t/lk> with t/lk specified by nlmlms' This is 
repeated for all the electrons. Now an iterative procedure begins. The 
t/I;(i =1= k) are used to work out the charge distribution of all the electrons 
except the kth so as to provide an improved U(rk ) from 

(6.9) 

in which the new U(rk ) is forced to be spherically symmetrical by an 
averaging over all angles in the second term of eq. (6.9) as indicated by a 
bar. The whole procedure is repeated until the final results converge to 
self-consistent values of the U(rk) and t/lk' The wave function for the 
whole atom is taken to be a simple product function in Hartree's method: 

(6.10) 

which is not a properly anti-symmetrized Slater determinant. The exclu­
sion principle is taken into account only in so far as the energy of the 
ground state is taken to be the lowest energy consistent with the assign­
ment of different sets of quantum numbers nlmlms to each electron. 

This intuitive procedure turns out to be equivalent to the use of the 
variational principle to minimize the total energy. In all variational 
methods the energy of the lowest excited state would be found by minimiz-
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ing the energy subject to the additional restriction that the excited-state 
wave function is to be orthogonal to the ground-state wave function. 

The use of properly anti-symmetrized wave functions in the solution of 
the radial problem leads to the so-called Hartree-Fock method. This 
approximation is somewhat better in that electrostatic exchange terms are 
included in the treatment, but the calculations are certainly longer and 
more difficult. 

It has been implicitly assumed that equivalent electrons, those having 
the same values of nand /, are described by the same radial function for all 
possible m[ and ms and that only the angular parts of the wave function 
differ. Relaxing this restriction might lead to a still better approximation, 
and a little recent work has in fact been done in this kind of computation. 
For some applications it would be desirable to have relativistic Hartree­
Fock functions, in which the Dirac equation rather than the Schrodinger 
equation is used in the single-electron problem. However, hardly any 
work has been done in this direction. At such levels of sophistication the 
calculations become very complex, and it is only with the use of high-speed 
computers that progress has been made. 

Radial wave functions are used for calculating expectation values of 
functions of r, and in applying the wave functions one has to bear in mind 
the assumptions on the basis of which they are derived. Wave functions 
based on the self-consistent field method are designed to give the best 
values of the total electrostatic energy of an atom; small energy differences 
are of course given less accurately. Quantities which are more sensitive 
than total energy to the form of the wave function are not necessarily 
given at all well by approximate wave functions which give the best total 
energy. Wave functions which lead. furthermore. to a good fit with 
experiment for N:nj;b dr. the integral which is needed to calculate 
electric-dipole transition probabilities, may lead to inaccurate values of 
<r- 3), the quantity which occurs in the formulae for fine-structure and 
hyperfine-structure splitting in a central field. Clearly a calculated value 
of <r- 3

) is very sensitive to the behaviour of the wave function at small 
values of r; on the other hand the region of small r contributes very little 
to the integral N:nj;b dr. It is unfortunate but true that one has to beware 
of relying on ab initio radial calculations of quantities other than energy 
for many-electron atoms to an accuracy better than IO or 20 per cent. It 
has sometimes been found in the past that calculated total energies have 
been accurate ( ~ I per cent) but that transition probabilities have been 
wrong by large factors. 

For some limited applications wave functions of an analytic form, such 
as modified hydrogenic functions with one or two adjustable parameters, 
have been used. These serve as approximations when more accurate wave 
functions are not known, and they have the advantage that expectation 
values of functions of r can be calculated in closed form. Such functions 
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have been used particularly for the cases I = n - I, for example 2p or 4/: 
in which the radial wave function is a bell-shaped curve with no nodes. 

6.2. Thomas- Fermi potential 

In the last section we have spoken of making a reasonable guess at a 
spherically symmetrical potential to be used as a starting point for the 
self-consistent field method. One way of doing this is to make use of the 
Thomas-Fermi model. 

This model pictures the electrons in an atom as a Fermi gas, that is a 
statistical assembly of electrons obeying Fermi-Dirac statistics, in which 
the exclusion principle is taken into account. The purpose of the model is 
to provide a method of calculating the electron density and from it the 
electrostatic potential due to the nucleus and the cloud of electrons. 

The calculation proceeds as follows: we assume that electrons are 
moving in a box of volume dv in co-ordinate space which is large enough 
to contain many electrons but at the same time small enough that the 
electrostatic potential cp(r) does not vary appreciably over the size of the 
box. Under this assumption the electrons are moving freely, with no 
forces acting on them, and their translational momenta can be taken to be 
directed isotropically in momentum space. Thus the volume of momentum 
space available to electrons with absolute value of momentum ~ P is 
(4n/3)p3, the volume of a sphere of radius p; and the volume of phase 
space available is (4n/3)p3 dv. 

The exclusion principle states, in this context, that not more than two 
electrons are allowed in each volume of size h3 in phase space. We now 
assume further that the electrons are packed in phase space as densely as 
possible consistent with the exclusion principle, that is, their kinetic 
energy is a minimum, which is equivalent to working at the absolute zero 
of temperature. Under these conditions the number of electrons per unit 
volume with momentum less than a maximum value Po is 

2 4n 3 

n = h3 X 3 Po, (6.11 ) 

or in terms of a maximum kinetic energy To = p6!(2m) 

_ 8n 3/2 
n - 3h3 (2mTo) . (6.12) 

The electrostatic potential energy for an electron is - ecp, and the con­
dition that an electron does not escape from the atom is 

T - ecp :} 0, 

whence the maximum kinetic energy is given by 

To = ecp. 

(6.l3) 

(6.14) 
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The charge density p = - en is therefore expressed in terms of the poten­
tial </>, from eqs. (6.12) and (6.14): 

( 6.15) 

The charge density p is, like </>, a function of r. The two are related by 
Poisson's equation 

V 2 </> = - p/c:n. (6.16) 

which becomes. with eq. (6.15). a differential equation in </>: 

2 4 £'(2111(,</»32 
V</>= --- ---

3rrh 3 4rr[;n 
(6.17) 

For this atomic model we require a solution of eq. (6.17) such that 

lim </>(r) = Ze/4rr[;nr (6.18) 
r---+ () 

where Ze is the nuclear charge, and 

lim r</>(r) = 0 (6.19) 

which ensures that the atom as a whole is uncharged. Equation (6.17) is 
usually rewritten with the following changes: 

(6.20) 

where 

x(r) = Zeff/Z , (6.21) 

and 

r = bx, (6.22) 

where 

(6.23) 

Thus eq. (6.17) becomes 

(6.24) 

This is a universal equation which may be solved numerically once and 
for all to give X as a function of x. Before we discuss a particular example 
we notice from eq. (6.20) that the potential </>(r) has been expressed as a 
screened Coulomb potential with Zeff as an effective screened nuclear 
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charge. Also, from eqs. (6.22) and (6.23), we see that b is just a scaling 
factor for distance from the nucleus: whereas eq. (6.24) which is inde­
pendent of Z indicates that the form of the potential, and hence of the 
electron charge distribution, is the same for all Thomas-Fermi atoms, the 
size of an atom actually decreases slowly as Z- 1/3. 
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Fig. 6.2. Potential curves for comparison with the Thomas-Fermi potential at Z = 20. 
(a) -e2 /4rr<.0'; (b) -20e2 /4rr£or; (c) V(r) = (-20e 2 /4rr£or) I. (r; 20); (d) (-e 2 / 

4rrcor {191. (r; 20) + 1:; (e) h 26/2mr2 

In Fig. 6.2 is plotted the Thomas-Fermi potential energy VCr) = 
- e¢(r) in units of e2 j41l:eoao as a function of rjao for Z = 20. The data are 
taken from the table of X versus x given in Condon and Shortley.t In the 
same figure - e2 j41l:eor (Zeff = I) and - 20e2 j41l:eor (Zeff = 20) are also 

t E. U. Condon and G. H. Shortley, The Theory of Atomic Spectra, CU.P. 1951, p. 337. 
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plotted. The effect of electrostatic screening of the nuclear charge is 
clearly shown for the Thomas-Fermi potentiaL which is intermediate 
between the two extremes (Zeff = I and Zeff = 20) in the region r ~ ao. 
As r -> 0, V(r)·--> - Z(,2 /47[£or. But as r -> 00, V(r) approaches zero 
much more rapidly than - ('2/47[£or. This behaviour is implicit in one of 
the assumptions of the modeL namely that the Thomas-Fermi potential 
is that due to the nucleus and all the electrons: it is the potential which 
would be seen by a small probe, and not that which would be seen by one 
of the electrons of the atom. The Thomas-Fermi potential is therefore 
inapplicable at larger r. A reasonable modificationt which improves the 
behaviour of the potential at large r is 

V(r) = (- ('2 /47[£or)( (Z - I );«r: Z) + I ] (6.25) 

where the x(r) is that appropriate to atomic number Z. This curve for 
Z = 20 is also shown in Fig. 6.2: it becomes indistinguishable from 
- ('2/47[£or for r/ao above about 6. 

Since the Thomas-Fermi model is a statistical model, one might 
expect it to be applicable, if at all, only for large Z. Furthermore, the 
electron charge density calculated from the model is a smooth function of 
r and does not show any shell structure (I-dependence). However, the 
Thomas-Fermi potential does serve as a trial potential for self-consistent 
field methods. It can even be used, with remarkable success even for 
small Z, to show at what value of Z an electron of given n, 1 is first bound. 
If the radial part of eg. (6.7) for a single electron is written in its so-called 
reduced form, with P(r) = rR(r) as in eg. (2.49), then we have 

d
2
P(r) 2m ( h

2 
1(1 + 1») ) 0 

-~ + - E - U(r) - - P(r = . 
dr2 h2 2m r2 

(6.26) 

The centrifugal term h21(l + 1)/(2mr2
) can be regarded as part of an 

effective central potential U'(r): 

h2 l(l + 1) 
U'(r) = U(r) + -2 2' 

m r 
(6.27) 

Clearly there is some cancellation between the positive term h21(l + 1)/ 
(2mr2) and the negative term U(r). An electron of given n, 1 will not be 
bound unless U'(r) is negative at some value of r. Bethet indicates the 
way in which the use of the Thomas-Fermi potential for U(r), the ground 
state potential, gives approximately the values Z = 5, 21, 58, 124 at which 
electrons with 1 = 1, 2, 3, 4 respectively are first bound in the periodic 
table. We have already mentioned in section 5.5 how a 3d electron is 
bound at Z = 21, but not at Z = 20. Figure 6.2 includes a plot of h11(l + 1)/ 

t A number of other improvements have been made to the original model. 
t H. A. Bethe, Intermediate Quantum Mechanics, Benjamin. 
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(2mr2) against r/ao for I = 2. It is touch-and-go whether U'(r) = V(r) + 
h26/2mr2 is positive or negative at Z = 20. 

6.3. The gross structure of the alkalis 

The alkali metals have electron configurations corresponding to closed 
shells plus one further electron. For example, the ground configuration of 
sodium (Z = 11) is Is22s2 2p6 3s. Because of the spherical symmetry of 
the closed shells, the central field approximation is an extremely good 
description of the motion of the single valence electron in the field of the 
nucleus and of the other electrons. Since the core of closed shells con­
tributes nothing to the angular momentum of the atom the energy levels 
can be labelled by the angular momentum I of the valence electron, 
together with its principal quantum number n. To describe the gross 
structure of the energy levels we omit spin-dependent interactions and 
consider only the central electrostatic field. 
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Fig. 6.3. Energy level diagram of Na. Terms with the same principal quantum number n 
are linked by dashed lines. 
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The central-field approximation 

For large r the valence electron has a potential energy -e2 /4rr<'or: this 
expresses the fact that the nuclear charge Ze is screened by the core of 
Z - 1 electrons. For small r the potential energy approaches - Z e2 /4rr<,0,. 
corresponding to an unscreened nucleus. Overall, the electrostatic 
attraction towards the nucleus is always greater than for hydrogen and so 
the energy levels are lower than the hydrogenic values for a given n. 
Moreover, the energy depends strongly on I. For small 1 the electron orbit 
is highly eccentric (to use the language of the old quantum theory): the 
electron penetrates the core and thus experiences a strong attraction 
towards the nucleus corresponding to a state of low energy. For larger 1 
the penetration becomes less and the energy levels become more hydrogen­
like. This is illustrated in Fig. 6.3 which shows an energy-level diagram for 
sodium. 

One might attempt to express the energy levels in terms of an effective 
nuclear charge Zeffe to take account of the modification of the pure 
Coulomb field by penetration of the core. Zeff would be a function of r for 
the valence electron, or of n, I. One could write 

Zeff = Z - a(n, l) (6.28) 

where a(n, l) is a screening parameter. In analogy with eq. (2.57) for 
hydrogen the energy would be 

En. I = -hcR {Z - a(n, l)}2/n2, (6.29) 

an equation which is actually a definition of a(n, l) in terms of the experi­
mental value of the energy En. I' It turns out that eq. (6.29) is more appro­
priate to a discussion of X-ray spectra than of optical spectra. 

In studying X-ray spectra one is concerned with the energy required to 
remove from the atom an electron bound in an inner shell. The gross 
structure (neglecting spin effects) of these one-electron energy levels is 
treated in terms of a central field with strong electrostatic screening 
effects, that is, by eq. (6.29). a(n, l) is then the effective number of electron 
charges which screen the nucleus from the inner electron with quantum 
numbers n and I. For example, in sodium (Z = 11) E(ls) = -79'4 
Rydbergs, hence a(ls) ~ 2·1. For a given n, 1 there is a smooth dependence 
of the one-electron X-ray energy levels on atomic number Z, practically 
independent of the periodicity which is characteristic of the valence 
electrons. Equation (6.29) may be re-written 

(
-E )1/2 I 
hc~1 = ~ (2 - a(n, I). (6.30) 

A plot of ( - Enl/hcR)1/2 against Z for various n, I is called a Bohr-Coster 
diagram,t in which the linear relationship of eq. (6.30) for a given n, I is 

t For an account of X-ray spectra in some detail see H. G. Kuhn, Atomic Spectra, Section 
IV C. 
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6.3. The gross structure of the alkalis 

fairly closely obeyed. The slope gives lin, and the intercept on the Z-axis 
gives (Y(n, I). (Y(n, I) depends mainly on n and much less on I: hence the 
gross classification of X-ray shells by the quantum number n according to 
the names K, L, M ... for n = I, 2, 3 ... 

To return to the problem of the single valence electron: historically an 
empirical formula which was found to fit the data for the alkalis was not 
eq. (6.29) but the Rydberg formula 

(6.31) 

or 

Enl = -hcRln*2 (6.32) 

where the effective principal quantum number n* is n - 0, and 0(1) is 
called the quantum defect. Equation (6.31) is obviously a modification of 
the Balmer formula for hydrogen. Unlike eq. (6.29) in which the effect of 
screening for an inner electron is written into Zeff, eq. (6.31) has the form 
appropriate to an electron entirely outside the core (Zeff = I) with the 
effect of penetration of the core written into n*. The virtue of the Rydberg 
formula in describing the excited states of a valence electron lies in the 
fact that 0(1) is very nearly independent ofn for a given I. Thus for the ns 
configurations of sodium the quantum defects are 

ns 
o(s) 

3s 
1·374 

4s 
1·357 

5s 
1·353 

6s 
1·351 

7s 
1·350 

For the np configurations 0(P) :::::: 0·86, for nd oed) :::::: 0'01, and for nf 
o(f) :::::: 0·00. The large departure from zero of o(s), and to a lesser extent 
of 0(P), indicates deep penetration of the core. On the other hand, the 
f-configurations are practically hydrogen-like. The relatively very small 
dependence of 0(1) on n may be attributed to higher order effects such as a 
polarization of the charge cloud of the core by the valence electron giving 
rise to a further attractive force towards the centre. The smaller the value 
of n, the closer the valence electron is to the core on the average and the 
greater is the degree of polarization. Thus on this account 0(1) is larger 
and Enl even lower for smaller n. 

The reader should study carefully tables of 0(1) or n* for all the alkalis 
(such as tables 15(a) to 15(e) in Kuhn's Atomic Spectra) to see the varia­
tion of n* with Z. For example the ground states of the alkalis, ns, show 
the following trend of n*: 

Element 
n 
n* 

Li 
2 

1·588 

Na 
3 

1·626 

K 
4 

1·771 

Rb 
5 

1·805 

Cs 
6 

1·869 
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The central-field approximation 

Thus n* changes very little compared with n, and the ionization potentials 
of these atoms are remarkably similar. In units of electron-volts they are: 

Element Li Na K Rb Cs 
Ionization potential (eV) 5·40 5·14 4·34 4·17 3·89 

F or an iso-electronic sequence of alkali-like elements eq. (6.31) can be 
modified, again in analogy with hydrogen-like elements, to read 

Z6 
Enl = -heR {n _ b(l)}2 (6.33) 

where Zoe is equal to the charge of the nucleus plus that of the closed shell 
of electrons. Zo = 1,2,3 ... for neutral, singly ionized, doubly ionized ... 
atoms. 

In such a sequence, b(l) does depend on Zoo For example, we consider 
the sequence iso-electronic with sodium for which Z = 11. The ioniza­
tion potentials for this sequence, all of whose members have a 3s ground 
configuration, together with the quantum defect b(s) defined by eq. (6.33) 
are given below:t 

Element Na I Mg II Al III Si IV P V S VI Cl VII 
Ionization 

potential (eV) 
b(s) 

5·14 
1·374 

15·03 
1·098 

28-44 
0·924 

45·13 
0·804 

65·01 
0·713 

88·03 
0·642 

114·27 
0·585 

We see that b(s) decreases along the sequence. This corresponds to the 
ions becoming more and more hydrogen-like. Such behaviour is to be 
expected because the perturbing effect of the closed shells of electrons 
becomes less and less important as the pure Coulomb attraction of the 
nuclear charge becomes more and more dominant. 

The Rydberg formula, presented here as an empirical one, has in fact 
been reached as an approximate result of a self-consistent field treatment. 

We shall return to a discussion of the fine structure in alkali spectra 
later. 

Problems 

6.1. Use the hydrogen radial wave functions of table 2.2 to evaluate the 
overlap integrals S~ RIsR2pr2 dr and S~ RIsR3pr2 dr. Calculate also 
S~ RISrRz/2 dr and fgc RISrR3pr2 dr and compare these off-diagonal 
elements with <r)L" <r)zp, <r)3p evaluated from table 2.3. 

l100 

xn e-
X 

dx = n!j 
t The notation Na I, Mg II, Al III, etc., is used to name the spectra of Na, Mg+, Al + + etc. 

Na I is also called the arc spectrum of sodium, Mg II the first spark spectrum of magnesium 
and Al III the second spark spectrum of aluminium. This nomenclature is associated with the 
conditions in the light source: an arc is suitable for exciting neutral atoms and a spark 
discharge favours ionization and excitation of the resulting ions. 
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Problems 

6.2. A radial wave function with no nodes (l = n - 1), corresponding to 
a Bohr circular orbit, might be written in analytical form as a modified 
hydrogenic function with one parameter: 

subject to the norm\llization So R2r2 dr = 1. 
By inspection, find the form of the parameter !X which gives the energy 

in hydrogenic form, i.e., E = -~Z'2e2/(4m'on2ao), for an electron 
moving in the field of an effective central charge 7' e. 

Show that the peak of R2r2, the probability density per unit radial 
thickness, lies at ro = n2aolZ', which is an effective Bohr radius for the 
charge distribution. 

Show also that with this wave function 

<rk) = (2n + k)! ( /Z')k. 
(2n) !2k nao 
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7. Angular problems in 
many-electron atoms 

In the last chapter we discussed the central-field approximation for many­
electron atoms, in which the zeroth-order Hamiltonian (eq. 6.3)) was 

·Yfo = I (-~ Vf + v(rJ). 
i 2m 

(7.1 ) 

In that approximation the wave function for the atom was expressed as a 
linear combination of products of single-electron wave functions each of 
which was separable into radial. angular. and spin parts (eq. (6.8)). 
Different configurations, each specified by a set of quantum numbers 
nJ" n212' ... , had different energies but there was degeneracy with res­
pect to the magnetic quantum numbers ml, and m Si ' In other words there 
were many states In,/,ml,m s " n212m12ms2' ... ) of a single configuration 
all of which had the same energy En,I,. n212' .... In the central-field 
approximation we neglected the residual electrostatic term in the Hamil­
tonian which represents a non-central force (eq. (6.4)): 

(7.2) 

We now wish to consider the term £, as a small perturbation together 
with other interaction terms which we have also neglected so far (see the 
list at the beginning of chapter 5). The largest of these other terms is the 
spin-orbit interaction 

(7.3) 

Before we consider the interactions £, and £2 in first-order pertur­
bation theory let us dispose of second-order effects, not because they are 
unimportant in atomic spectra-far from it-but because we shall not 
be able to discuss them in detail within the scope of this book. In eqs. (7.2) 
and (7.3) we are dealing with two kinds of operators: a sum of one­
electron operators, F = 'LJ;, like eq. (7.3) and the second term in eq. (7.2), 
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7.1. The LS coupling approximation 

and a sum of two-electron operators, G = Li>jgij,like Li>je2 /4m:o i"ij' 
In the representation appropriate to the central-field approximation, that 
is when the wave function for an N-electron atom is of the form of a 
determinantal product of N one-electron functions, these operators can 
have off-diagonal matrix elements. If IA) and IB) represent two deter­
minantal product eigenfunctions of ~o (eq. (7.1» with eigenvalues E A 

and EB , where the labels A and B each stand for a list of N individual sets 
of quantum numbers n1l1ml,m S , ••• nN1Nm1NmsN' then <AI FIB) can be 
non-vanishing if IB) differs from IA) by not more than one individual 
set of quantum numbers. Also <AI G IB) can be non-vanishing if IB) 
differs from IA) by not more than two individual sets.t The result is that, 
subject to certain limitations imposed by angular momentum considera­
tions, the perturbations F and G can mix different configurations into the 
zeroth-order central-field configuration according to eq. (B.7) in appen­
dix B. For example, under the action of the term Li > j e2 /4rrf.ni"ij the 
unperturbed function IA) is modified to become t/I where 

<BI " .. e2 /4m;o"·IA) t/I = IA) + IIB) L.-I>j Ij, 

B EA - EB 
(7.4) 

so that some of the character of the configurations B is mixed into the 
configuration A. 

In what follows we shall assume that the energy denominators EA - EB 
are so large that this configuration mixing is negligible. In other words 
we shall assume that we are able to treat each configuration as if it were 
isolated from all the others. We are therefore retaining the central-field 
approximation in zeroth order and we are about to consider the pertur­
bations ~I and ~2 of eqs. (7.2) and (7.3) in first order. 

7.1. The LS coupling approximation 

We are concerned now with the structure of a single configuration arising 
from the application of ~l and ~2 as perturbations, that is we are con­
cerned with the energy differences resulting from a lifting of the degeneracy 
within a single configuration and not with a shift of the energy of the 
configuration as a whole. For a given configuration n and I are fixed for 
each electron and the degeneracy is entirely with respect to the m l and ms. 
In first-order perturbation theory we take diagonal matrix elements of 
the operators)fl andYf2 . It is shown in more advanced texts that the 
diagonal matrix element of the interaction Lj e2 /4rrf.or Ij between a valence 
electron 1 with quantum numbers nlmlms and electron} of a closed shell, 
where the summation is taken over all members of the closed shell, is 
independent of ml and ms. Thus this term does not lead to a splitting, only 
to a shift of the energy of the whole configuration. The same is true of the 

t See E. U. Condon and G. H. Shortley, The Theory of Atomic Spectra, chapter 6. 
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Angular problems in many-electron atoms 

sum over closed sheIls of interactions between pairs of electrons (a) when 
both members of the pair are in the same closed sheIl and (b) when they 
are in different closed sheIls. The single-electron terms, - Li (7 e2 /47rG Or i + 
V(r i», of £1 also give only a shift of the energy of the configuration. All 
this is to say that the spherical symmetry of the closed shells leads to a 
great simplification which one might feel intuitively, namely that in con­
sidering the energy splitting within a configuration arising from electro­
static interactions one need only consider the interactions Li > je

2 /47rEorij 

between pairs of valence electrons. 
As regards the terms of £2 = Li ~(rJli . Si' which are one-electron 

operators, it can easily be shown that the sum over a closed sheIl of this 
interaction is zero (see problem 7.4). Thus for the spin-orbit interaction 
also, only the valence electrons are involved. The reason for neglecting 
the other relativistic terms which we treated together with the spin-orbit 
interaction in hydrogen is that these terms are not spin-dependent and do 
not contribute to a splitting. They only shift the energy of the configura­
tion as a whole, and like all the electrostatic effects which contribute only 
to a shift they are now to be ignored. 

We are therefore left with the perturbation 

.ff1 +ff2 = L e
2

/ 47rEorij + L ¢(rJli . Si 
i > j 

(7.5) 

where the summations are taken only over valence electrons. In carrying 
through degenerate perturbation theory we need to investigate the 
constants of the motion for we must use a representation for the zeroth­
order wave functions in which the perturbation is diagonal. It is therefore 
useful to make a list of the angular momentum operators with which the 
perturbations commute. 

As in the discussion of helium in chapter 5 we can see that Li > j ('2/47rEol"ij 

commutes with L 2 and the components of L, in particular L z , where 
L = Li Ii because the interaction is internal to the orbital system and 
cannot change the orbital angular momentum of the system as a whole; 
and of course it commutes with the spin operators S2 and Sz where S = 
Li Si is the total spin angular momentum (as already remarked, we need 
only consider summation over the valence electrons). We can also form 
the total angular momentum of the electrons 

(7.6) 

where ji = Ii + Si' the total angular momentum of a single electron. Then 
Li > j e2/47rGorij commutes with J2 and lz, a result which foIlows alge­
braically from the fact that Li > j e2 /47rGorij commutes with the components 
of Land S separately; also Li > j e2/47rGorij does not give rise to an external 
torque on the electrons as a whole, so the total electronic angular momen­
tum is a constant of the motion. But e2/47rBorij does not commute with 
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7.1. The LS coupling approximation 

Iz, : this is an expression of the fact that there is a torque on an individual 
electron due to its electrostatic interaction with another electron. The 
individual orbital angular momenta can also change their magnitudes 
under the action of the electrostatic repulsion, but the effect of this on the 
energy is in second order via eq. (7.4), an effect which we are assuming to be 
negligible. That is, for a single configuration isolated from other con­
figurations the ni and Ii are fixed. In passing, it should be pointed out that 
when configuration mixing does occur Li > j e2 /4][£orij can only mix states 
with the same L, S, and Jbecause of the commutation relations; moreover. 
since Li > j e2/4rwOrij is even under a parity operation, only configurations 
of the same parity, given by (- 1 )r,[, can be mixed by this interaction. 

By contrast, the spin-orbit operator Li ~(rJli . Si commutes with jl 
and iZi = Iz, + SZi as we have seen in section 4.3, but not with 'Zi and SZi 

separately. It also commutes with J2 and Jz since the interaction is internal 
to the atom, but not with L 2, L z, S2, or Sz. 

In seeking a representation in which to treat these perturbations we 
need labels associated with constants of the motion. In the configuration 
representation a state is completely specified by four quantum numbers 
nfm[ms for each electron. For an N-electron system one needs 4N inde­
pendent labels. Thus for two electrons some of the possible choices are 

(a) (nlm[ms) 1 (nfm/m,}2; 
(b) (nlL(nfhLSM LMS; 
(c) (nl)l(nl)2LSJMJ; 
(d) (nl) 1 (nl)2(jm) 1 (jmjh ; 
(e) (nl)l(nl)zJd2JMJ. 

For three or more electrons twelve or more quantum numbers are needed 
and one begins to run out of angular momentum labels. In such cases it is 
necessary to classify the states according to other symmetry principles. 
To avoid these difficulties we shall confine our discussion mainly to two­
electron systems. 

Matters are greatly simplified if we are able to decide on the basis of 
experiment whether one of the perturbations we are considering can be 
neglected in comparison with the other. Although all three cases­
spin-orbit interaction large, small, and of the same order compared with 
the residual Coulomb interaction-actually occur, the most common 
situation especially in light elements is that in which the spin-orbit 
interaction can be neglected as a first approximation. That is to say, the 
fine structure for which the spin-orbit interaction would be responsible is 
much smaller than the splitting into terms produced by the residual 
Coulomb interaction e2 /4][£0" 12. As evidence of this we can refer to table 
5. I for helium: the single-triplet term differences quoted there are of the 
order of 1,000 cm - I, but the fine structure, as we shall see later, is at 
most I cm - I. For calcium (2 = 20) the 3p and 1 P terms of the con­
figuration 4s4p are separated by about 8,000 cm - 1 while the fine structure 
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Angular problems in many-electron atoms 

of the 3p term extends over 150 cm - 1. In germanium (Z = 32) the ground 
configuration is 4p2 and its three terms 3p, 1 D, and 1S cover a region of 
16,000 cm - 1 while the fine structure of the 3p term spreads over 1,500 
cm - 1. In such examples, while the spin-orbit interaction increases with 
atomic number it is nevertheless small compared with the residual 
Coulomb interaction. 

The approximation in which the spin-orbit interaction is neglected in 
comparison with the residual Coulomb interaction is called the LS 
coupling approximation. For, as we have seen, Land S are good quantum 
numbers, representing constants of the motion, under the perturbation 
('2/411:1:01" 12 . 

For a single configuration in LS coupling either of the representations 
(b) or (c) above would be a suitable zeroth-order representation for the 
perturbation e2 /411:1:01" 12' That is. with (n/)1 and (nIh fixed. Land S are 
specified together with either M Land M s or 1 and M,. The first-order 
energy shift is. in representation (b). 

It can be shown that /1,.£ is independent of the values of M Land M s: this 
is equivalent to the physically reasonable argument that the observed 
energy under such an interaction cannot possibly depend on the choice 
of the orientation of a set of co-ordinate axes in the laboratory. Thus there 
is (2L + I )(2S + I )-fold degeneracy with respect to M L and Ms. The 
set of (2L + I )(2S + I) states labelled by Land S is called a term. The 
energy depends only on Land S. In the LS1MJ representation the energy 
is independent of 1 and M J, and there is a L.7 :Il- Sl (21 + 1 )-fold de­
generacy. L.7:ll-sl (21 + I) is exactly equal to (2L + 1)(2S + I) 
because the number of states of a given term must be conserved inde­
pendent of the choice of representation. The state [LS1MJ ) can be 
expressed as a linear combination of the states [LSM LM s) having the 
same Land S but various combinations of M Land Ms in a manner quite 
analogous to eq. (4.54). 

The reason why the electrostatic energy seems to depend on S. even 
though e2 /4][1:0 1" 12 does not operate in spin space. is that the exchange 
symmetry requirements must be satisfied. This is just the question which 
was discussed in chapter 5 in connection with the energy levels of helium. 

Actually to work out an energy shift like eq. (7.7) involves a knowledge 
of the radial wave functions of the single electrons. We cannot go into the 
details of such calculations in this book. but we can indicate the procedure 
for getting from eq. (7.7) to radial integrals. The state [(nl)1 (nlhLSM LMS) 
is first expanded in terms of determinantal product states. We have 
already seen an example of this in eq. (5.59). In this way the exchange 
symmetry requirements are satisfied and the wave function is expressed 
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7.1. The LS coupling approximation 

in terms of single-electron functions. The matrix element, eq. (7.7), is 
then a sum of terms of the forms 

J = f u;(1)u;(2) (e2/4m'o'"12)ua(l)Ub(2)x;,(I)x;,,(2)XmJI)Xm,,(2) dr. (7.8) 

and 

K = f u;(l)u;(2) (e2/47r£o"12)ub(l)ua (2)x;,(l)x;,J2)xm,,(I)Xm,(2) dr. (7.9) 

These are just the direct and exchange integrals similar to eqs. (5.47) and 
(5.48), except that the angular and spin parts are included. The sub­
scripts a and b each stand for a set of quantum numbers nlm,. Since 
e

2
/47r£o" 12 does not operate on the spins and the X functions are normalized 

and orthogonal, the products X*X can be set equal to unity (eq. (4.9)) with 
the provision that in the exchange integral K, m~ = ms. Otherwise the 
exchange integral vanishes, 

The operator e
2

/47r£ol" 12 is a function of the angle (I) between [I and [2' 

In the central-field approximation it is convenient to expand the operator 
in a series of Legendre polynomials: 

ex ,.k 
I k:1 Pk (cos (t)) (7.10) 

k=() ,. > 

where I" < is the lesser of r1 and r2 , and r> is the greater. The wave functions 
un1m' are expressed as products of radial and angular parts, Rnl(r) 17'(0, ¢), 
or more conveniently (l/r)Pnlr) 171(0, ¢) where the normalization for the 
radial part is S~ [Pn1(r)]2 dr = I as in eq. (2.55). With the operator in 
the form of eq. (7.10) the integration over angles in eqs. (7.8) and (7.9) is 
carried out: this can be done once and for all, and the results can be 
tabulated as a set of coefficients which are functions of I, m1 for each pair 
of electrons. What is left in the diagonal matrix element of ('2/47r£ol" 12 is a 
set of radial integrals (so-called Slater integrals) Fk. which are direct 
integrals. and G k

, which are exchange integrals.t These have the forms 

and 

These are the quantities which have to be worked out with a knowledge 
of radial wave functions. Actually, the quantities met in the literature 

t Condon and Shortley treat this subject in chapters 6 and 7. 
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Angular problems in many-electron atoms 

have a different notation. They are Fk = Fk/Dk and Gk = Gk/Dk where 
Dk is merely a number, depending on /10 Iz, incorporated into the defini­
tion of Fk and Gk to make the arithmetic easier. 

The index k extends only over a few small integral numbers which 
satisfy two conditions. The first is a triangular condition with the orbital 
angular momenta: if the numbers /, /' and k are represented as lengths, 
then these three lengths must be capable of forming the sides of a triangle, 
or in other words [/ - 1'[ ~ k ~ / + 1'. The second condition is a 
perimeter rule: k + / + I' is to be an even integer. These conditions are 
imposed by the requirement that the angular coefficients in the matrix 
element of eZ/4n£or lZ should not vanish. For the direct integral Fk the 
conditions are to be obeyed by the sets (k. /1 . /1) and (k. /z. /z) so k itself is 
even in this case; and for the exchange integral Gk they are to be obeyed by 
the set (k, II' Iz). As k increases Fk and Gk tend to become smaller and 
smaller. 

The term energies in LS coupling depend just on sums of Fk'S and Gk's 
each with a coefficient which depends on single-electron orbital angular 
momentum quantum numbers. The simple example of the configuration 
Isnl in helium has the terms I Land 3L, where L = 1 and the term energiest 
are, as in eq. (5.46), 

EeL) = Fo + G/, 

EeL) = Fo - G/. 

(7.11) 

(7.12) 

Fo and Gl each depend on the radial wave functions of both the Is and nl 
electrons. 

The accuracy of ab initio radial calculations does not as a rule match 
the experimental precision with which the energy levels can be determined. 
Therefore the Fk'S and Gk's are often treated as parameters to be deter­
mined from experiment. There are sometimes simple relations between 
energy differences which depend only on the angular coefficients and 
these can be used as a test of the validity of the LS coupling approximation 
without a knowledge of radial wave functions. We shall give an example 
of this in the next section. 

7.2. Allowed terms in LS coupling 

Having seen in outline how the radial integrals of the central-field approxi­
mation enter into the calculation of the term energies in LS coupling, let 
us leave this difficult topic and turn instead to a discussion of the labelling 
of the terms in LS coupling. This much simpler problem is more'a matter 
of book-keeping. 

In considering the allowed values of Land S for non-equivalent 

t A list of term energies for simple configurations is given in Condon and Short ley, 
chapter 7, 
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7.2. Allowed terms in LS coupling 

electrons we find simple branching rules. If we start from a closed shell 
and add valence electrons one at a time we have the following scheme: the 
term for the closed shell is IS. Adding an nl electron we have the term 2L, 
that is S = ~ and L = I. Adding a further electron n'l' to form the con­
figuration nln'l' we have all possible terms arising from the vector additions 
S' = S + s' and L' = L + 1'. The spin part gives S' = S ± t, or since 
S was ~ we have S' = 0, 1, that is singlets and triplets. For example, 
consider the configuration npn'd. The single np electron has the term 
2p (L = I = I). Addition of the n'd electron (I' = 2) gives singlets and 
triplets each with L' = L + 1', ... , [L - 1'[, or in this case L' = 3,2, 1. 
Therefore the allowed terms of the npn'd configuration are IF, ID, Ip, 
3F, 3D, 3p. The term 2p of the np configuration is called the parent of all 
these six terms. The parent is indicated in the following way: npep)n'd 3F; 
however, in this example it is not necessary to name the parent since there 
is no ambiguity. 

When a third electron is added ambiguity does arise. The two-electron 
singlet parents beget doublets, and the triplet parents beget doublets and 
quartets. For example, out of the many terms of the configuration 
npn'dn"p, the npn'd IF parent gives terms npn'deF)n"p 2G, 2F, 2D. 2F 
terms also come from the parents I D, 3F, and 3D. All these four 2F terms 
have different energies, but the same Land S. Specifying the parents helps 
to classify the terms. 

For a quantitative example of the energies of terms in LS coupling let 
us consider the excited configuration 3p4p of silicon. From the branching 
rules given above, we find that the allowed terms are IS, I P, I D; 3S, 3p, 3D. 
This configuration lies about 50,000 cm - I above the ground configura­
tion. It is a good example of a pure configuration, that is one which is not 
mixed with other configurations as a result of electrostatic interaction.t 
(Such examples in excited configurations are rather hard to find, for at 
excitation energies of the order of 50,000 cm - I there are usually several 
other overlapping configurations so that the energy denominator of 
eq. (7.4) is not small.) 

In terms of the Slater integrals for the npn'p configuration the energies 
of the terms are given by 

EeS; 3S) = Fo + IOF2 ± (Go + IOG2 ), 

Eep; 3p) = Fo - 5F2 =+= (Go - 5G2), 

EeD; 3D) = Fo + F2 ± (Go + G2). 

(7.13) 

(7.14) 

(7.15) 

In these equations Fo, F 2 , Go, and G2 are treated as four unknown para­
meters and their values are found from a least-squares fit to the six known 

t For this information and for the data on silicon which follow I am very grateful to 
B. Warner and R. D. Cowan. 

117 



Angular problems in many-electron atoms 

experimental energies (Fo includes the energy of the configurationt 
relative to the ground state, and all energies are given relative to the 
ground state as origin). The experimental term energies are shown in 
Fig. 7.1, and from them are obtained the values 

Fo = 48,992'152cm- I 
Fz = l51'149cm- I 
Go = 978·852 cm - I 
G z = n819 cm- l 

Ignoring the small quantity G z which is much less than Go, we see that the 
effect of the exchange integral Go is to separate the singlet from the triplet 
for each L by 2Go ~ 2,000 cm - I. However, the triplets do not always lie 
below the corresponding singlets: the order alternates with increasing L. 
This alternation is a general result for two electrons. There are also certain 
relations depending on the angular coefficients only; these are obtained 
by taking ratios of differences of term energies, thus eliminating the 
radial parameters. For example, from eqs. (7.13), (7.14), and (7.15) 

EeS) - EeD) 9Fz + 9G 2 3 

EeD)- Eep) 6Fz + 6G 2 2 
(7.16) 

The experimental values give 

51,612 - 50,189 1,423 
1·34. 

50,189 - 49,125 1,064 

Similarly 

EeS) - EeD) 9F2 - 9G2 3 

EeD) - Eep) 6F2 - 6Gz 2' 
(7.17) 

and experimentally 

49,400 - 48,160 1,240 
1-42. --

48,160 - 47,284 876 

Of course the experimental energy differences are differences of large 
numbers so the ratios are very sensitive to small displacements of the 
terms from their theoretical positions. Perturbation by spin-orbit inter­
action, which we are neglecting in LS coupling, can give rise to these 
displacements. The size of the fine structure splitting of the 3p and 3D 
terms is indicated in Fig. 7.1. 

We have considered the six terms IS, I P, I D; 3S, 3p, 3D arising from the 
configuration npn'p. Each term is (25 + I) (2L + I )-fold degenerate: 

t This energy of the configuration (or centre of gravity of the terms) is subject to shifts of 
the configuration as a whole which, as mentioned at the beginning of section 7.1, we wish to 
ignore. Our discussion is concerned only with the splitting of the configuration into terms. 
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therefore there are Lterms (2S + 1 )(2L + 1) = 36 states of this con­
figuration. The number of states is also (2s I + 1)(2/1 + 1)(2s2 + 1) 
(2/2 + 1) which for 11 = 12 = 1 is again 36 as expected. 

52,000 
51,612 

1S 

50,189 

50,000 /1() 
49.40~,,),,, 

I / 3s 49,125 _ 
___ ~3p'b 

3p4p 

48,000 

47,284 
-;p 

Fig. 7.1. Energies (above the ground state) of the terms of the excited configuration 
3p4p in Si I. The fine-structure splitting of the triplet terms is also indicated. 

We shall now consider the np2 configuration as an example of two 
equivalent electrons. Because of the requirement of the exclusion prin­
ciple that the two electrons which already have the same nl cannot have 
the same values of m l , ms, the number of states is greatly reduced. There 
are actually only 15 states of the np2 configuration. The simplest way to 
find what terms are allowed is to adopt the following recipe: 

(I) From the branching rules make a list of the LS terms allowed for 
the configuration of non-equivalent electrons. in this case npn'p: 3D. 
3P. 3S. 10. Ip, IS. 

(2) For each of these terms define the number N~NeO), Nep) 
etc.~which are allowed for the configuration of equivalent electrons, in 
this case np2. These are the numbers which we wish to find. 

(3) Write out the pairs of M s ' ML values allowed for the LS terms 
under consideration (columns I and 2 of table 7. I). It is sufficient to list 
only non-negative values and it is convenient to start with maximum M s 
and ML and work downwards. 

(4) Write out (column 3) all the determinantal product states allowed 
by the exclusion principle for which. in each row Lm" = M sand 
Lm l , = M L • 
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(5) Count the number of such states in each row and enter the result in 
column 4. This is the number of states in the (m/mJI (m/mJ2 representation 
having a given Ms and MI .. But this number must be independent 0/ 
representation, so 

(6) Write in column 5 the number Lt.. sNes+ I L) of states in the LS 
representation which are allowed to have the given M sand M t.' and 
equate these to the numbers in column 4. This procedure gives enough 
simultaneous equations to evaluate the unknown values of N. 

Table 7.1. Terms of the configuration np' 

Ms MI.l Determinant"! 
product stales 

Numher Numher 
(111,111,1, (111,111,)2 (LSMI.Ms) 

~ 

I 2 none 0= N(3D) 

: I 0: I = N(3D) + N(3p) 

0 :1 -I: = N("D) + N(3p) + N(,S) 

0 2 :1 I: = N(3D) + N('D) 

0 : I 0:. (0 I' I 2 = N(3D) + N('D) + N!'P) + N('P) 

0 0 (I -I:. :-1 I:. :0 0: 3 = N(3D) + N('D) + N(3p) + N('p) 
+ N('S) + N( 'S) 

In this simple case the answers can be obtained by inspection; they are 
NeD) = 0, Nep) = L NeS) = 0, NeD) = L Nep) = 0, NeS) = 1. 
Thus the only allowed terms of the configuration np2 are IS, 3p, and I D. 
In fact it can be shown generally that for two equivalent electrons 11/2 

the quantity S + L must be even. This is a useful mnemonic. 
To find the particular linear combinations of the determinantal product 

states which give the terms in the LSM LMS representation we need to 
know the properties of angular momentum operators. t Let j be a general 
angular momentum operator and let us consider a representation lim) in 
which j2 and iz are diagonal with eigenvalues i(j + 1) and m respectively. 
The componentsix andiy are best treated in the linear combinations 

for then 

i+ = ix + iiy, 

i- = ix - iiy, 

i±lJm) = {j(j + 1) - m(m ± 1)}1/2fjm ± I). 

t See appendix C, and Dicke and Wittke chapter 9. 
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The operators are called raising and lowering operators, or sometimes 
ladder or shift operators, because they transform the state IJm) into one 
in which the m-value is raised or lowered by unity. Further, we shall need 
to know how to apply these angular momentum operators to deter­
minantal product functions. The operators we are dealing with here are 
single-particle operators /; or sums Li /; of such operators. It is a property 
of determinantal product functions that matrix elements, taken with 
these functions, of operators of the kind Li /; are just the same as if simple 
product functions had been used. (For verification of this property see 
problem 7.4.) 

The application of angular momentum operators to the transformation 
from the determinantal product representation to the LSM LMS repre­
sentation is as follows (we take the np2 configuration as an example): 
consider one of the unique identifications of table 7.1, say, 

+ ~ 
lID; 2, 0) = {II}, (7.21 ) 

where the notation on the left-hand side means that this state of the I D 
term has M L = 2 and Ms = O. Operating on eq. (7.21) with L~ = II ~ + 
12 ~ we obtain, on the left-hand side 

L~IID; 2, 0) = (2(2 + I) - 2(2 - 1»1/21ID; 1,0) 

= 211D; 1,0) (7.22) 

and on the right-hand side 

+ ~ 
(ll~ + 12-){l1} = (1(1 + 1) - 1(1 

+ ~ 
+ (1(1 + 1) - 1(1 - 1»1/2{1 O} 

+ ~ + ~ 

= (2)1/2{0 I} + (2)1!2( I OJ. (7.23) 

(Equation (7.23) is an example of operating on a determinantal product 
function with a sum of single-electron operators.) Equating the results of 
eqs. (7.22) and (7.23) we have 

(7.24) 

With the operator L_ we have succeeded in 'Iaddering' down one rung 
in M L from the state 11 D; 2, 0) to the state 11 D; 1,0). The other state 

+ ~ + ~ 
which was a linear combination of {O I} and {l O} in table 7.1 was 
13 p; 1,0). This must be orthogonal to lID; 1,0), therefore 

(7.25) 
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There is an arbitrariness in the phase of this function, and in order to 
make our choice of phase consistent we can, alternatively, use a spin 
operator S+ = SI+ + S2+' For consider another unique identification 

(7.26) 

S+1 3P; I, -I) = (1(1 + I) - (-1)( -I + 1»1/213p; 1,0) 

= (2)1/213p; 1,0). (7.27) 

Also 
+ -

(SI + + S2+){l O} = (t(1) - (-t)( -t+ 1»1/2{l O} 
-+ +- -+ 

+ (t<1) - (-t)( -t+ 1»1/2{1 O} = {I O} + {I O}. (7.28) 

- + + -
Therefore, since {I O} = - {O I} from the properties of a determinant, 
we have 

(7.29) 

We therefore choose the phase for the state 1
3 p; \, 0) as that given by 

eq. (7.29). Indeed, there was an arbitrariness about the choice of phase in 
the fifteen original states of np2 : we could have attached a negative sign 
or a general factor C

ib to any or all of them. But having made a consistent 
choice we must stick to it. 

Further results are obtained by a continuation of the laddering process. 
For example, the results for the three states with M L = Ms = 0 are 

+ - +- +-
110;0,0) = (6)-1i2{l-1} + (6)-1/2{-11} + 2(6)-1/2{00}, (7.30) 

+ - + -
1
3p; 0, 0) = (2)-1'2{1 -I} - (2)-1/2{ -I l}, (7.3\) 

The 1
2S + I L; M L, M s) states are properly normalized if the determinantal 

product states are. 
Transformations like these are the ones required to express expectation 

values like eq. (7.7) in terms of integrals over single-electron functions 
like eqs. (7.8) and (7.9). 

An example of the np2 configuration is the ground configuration 3p2 of 
Si. In terms of the Slater integrals (G k = Fk for equivalent electrons) the 
energies of the terms are given by 
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EeS) = Fo + lOF2 , 

Eep) = Fo - 5F2 , 

EeD) = Fo + F2 · 

(7.33) 

(7.34) 
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A least-squares fit of Fo and F2 to the experimental data, which are shown 
in Fig. 7.2, gives 

Fo = 5,217·322 cm -1, 

F2 = 1,017·420 cm- 1
. 

The theoretical relation 

EeS) - EeD) 

EeD) - Eep) 

is to be compared with the experimental ratio 

15,394 - 6,299 
6,299 - 150 

9,095 
6,149 

3 
-
2 

1·48. 

16,000 
15,394 

1S 

12,000 

8,000 

4,000 

o 

(7.36) 

Fig. 7.2. Energies (above the ground state) of the terms of the ground configuration 
3p2 in Si I. The fine-structure splitting of the triplet term is also indicated. 
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The agreement with theory is much better than in the case of 3p4p treated 
above. Comparison of Figs. 7. I and 7.2 shows that the fine structure of 
the 3p2 3p term is much smaller relative to the electrostatic splitting than 
is the case in the 3p4p configuration. Hence one expects qualitatively that 
the L5 coupling approximation is better for 3p2. 

The ordering of the term energies in the 3p2 configuration is an example 
of Hund's rule which applies to the ground configuration of equivalent 
electrons in LS coupling. The rule is: The ground term has the largest 
value of 5 (maximum multiplicity 25 + I) consistent with the exclusion 
principle; if there are several such terms then the one with the largest 
value of L lies lowest in energy. 

Thus for 3p2, of the three terms I S, I D, 3p, the triplet lies lowest. Since 
there is only one triplet there is no need to invoke the rule about L. 
Actually, among the singlets the term ID with larger L lies below IS, but 
Hund's rule does not prescribe this ordering nor is it generally followed. 
For example, in Zr I the ground configuration is 4d 25s2 (the 5s2 electrons 
form an outer closed shell). The allowed terms of the 4d 2 configuration are 
IS, ID, IG, 3p, 3F. Hund's rule states that the ground term is a triplet 
(larger 5), and of the two triplets 3F (larger L) is to be chosen. This is in 
fact the case, but among the singlets I D lies below IG. 

On adding a third np-electron to the parent np2 we come to a half-filled 
shell of equivalent p-electrons. We can discover the Hund's rule ground 
term by setting up a determinantal product state in which Ms = Li ms , 

is kept as large as possible consistent with the Pauli principle, at the same 
time trying to make M L = Li mI, as large as possible. Thus for np3 we have 
+ + + 

{I 0 - I} for which M s = ~, M L = O. This is uniquely associated with 
the state 1

4S; 0, ~), so the ground term is 4S. Examples of this configura­
tion occur regularly through the periodic table: N, P, As, Sb, Bi. Similarly 
the ground term of nd 5 is 6S, and of nl7, 8S. The ground term is bound to 
be an 5-term (M L=ax = 0) if Ms is maximized. A further consequence of 
the special symmetry of half-filled shells is discussed in the next section. 

The configuration nIX of equivalent electrons for which the shell is 
more than half full (that is, x > NI2 where N is the maximum number of 
electrons, 2(21 + I), allowed in the shell) has the same terms as the con­
figuration nIN -

x
. The Hund's rule ground term of the configuration np4, 

+ + + -
for example, is associated with the state {l 0 -1 l} for which Ms. = I, 

++ 
M L = I. The ground term is 3p, just as for two electrons: {I O}, M s = I, 
ML = I. 

7.3. Fine structure in LS coupling 

So far in this chapter we have considered the effect of the residual Coulomb 
interaction, eq. (7.2), in splitting a single configuration into terms. The 
good quantum numbers, representing constants of the motion, have been 
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Land S, and either Mu Ms or J, M J • We have chosen to work in the 
LSM LMS representation simply for convenience-for example, it has 
been easy to apply the shift operators L± and S ±. There has been no 
interaction between spin and orbit. 

We now consider the spin-orbit interaction (eq. (7.3.» 

(7.37) 

as a small perturbation. £2 can have matrix elements off-diagonal in L 
and S, leading to a breakdown of the LS coupling approximation, but we 
shall assume that the splitting due to spin-orbit interaction is very much 
smaller than the separation between terms so that we can consider a single 
term as an isolated system. Thus we retain the LS coupling approximation 
and treat Land S as good quantum numbers. We treat £2 by first-order 
perturbation theory in which we consider only matrix elements diagonal 
in Land S. 

Because the zeroth-order state lyLSM LMS), where y specifies the con­
figuration, is degenerate in M Land Ms we need a representation in which 
the perturbation is diagonal. The arguments of section 4.3 for the singIe­
electron case apply directly to the many-electron case in LS coupling. 
Just as in eqs. (4.54) and (4.55) we require the yLSJMJ representation; 
then the first-order energy shift is 

(7.38) 

In eq. (7.38) we have to deal with an operator which is a sum of single­
electron operators but whose diagonal matrix element is to be taken 
between states in a coupled representation. Let us first see what we can 
say about this with the help of the vector model. 

For two electrons in LS coupling 11 and 12 fonn a vector resultant L 
about which they are considered (in a classical sense) to be precessing 
rapidly; similarly SI and S2 precess rapidly about S. The precession of L 
and S about their resultant J is much slower, corresponding to the 
assumption that the spin-orbit energy splitting is much smaller than the 
splitting due to residual electrostatic interaction (with exchange effects). 
That is to say, the classical motion of the orbital system L = 11 + 12 is 
nearly independent of that of the spin system S = SI + S2' and Land S 
represent constants of the motion in this approximation (see Fig. 7.3). 
The classical vector model, set up in this dynamical way, is concerned with 
time averages: the component of 11 perpendicular to L averages to zero 
over the many cycles of the rapid precession of 11 about L which take 
place during one cycle of the slow precession of L about J. Thus only the 
component of 11 lying along L is taken into consideration; similarly for SI' 
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The time average of II . SI' indicated by a bar, with respect to the rapid 
precessional motion is 

I-:-s = (~~) L) . (~ ___ S) s). 
1 1 L2 S2 (7.39) 

But L . S is constant under this averaging process, hence 

(7.40) 

where 

(7.41) 

The rule is therefore: consider the most rapid precessional motion first, 
and project each of the individual vectors partaking in that motion on to 
their resultant. In transferring to quantum mechanics, the quantities L 2 

and S2 in eq. (7.41) are replaced by expectation values L(L + I) and 
S(S + I). 

Fig. 7.3. Vector model for the angular momenta of two electrons in LS coupling. 

This rule is a good one because quantum mechanics makes an equivalent 
statement in terms of matrix elements rather than time averages. To 
illustrate the projection procedure we refer to operators in orbit space. 
In taking matrix elements diagonal in L the dependence on M L of any 
vector operator in orbit space, in particular Ii' is just that of the operator L 
itself. The reason for this is that all vector operators in orbit space trans­
form in the same way under a rotation of the co-ordinate system so that 
the dependence on the orientation of the co-ordinate system (the M L 

dependence) is the same for all. Thus for matrix elements diagonal in L 
we can write the direct proportionality: 

(7.42) 

where the constant of proportionality c is independent of M L and M~. 
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If it is understood that we are only to consider matrix elements diagonal 
in L, we can use the effective operator 

I; = cL. (7.43) 

The constant c can be evaluated in terms of a matrix element ofl; . L (for 
this evaluation we are at liberty to choose M~ = M L): 

(7.44) 

hence 

(7.45) 

That this is independent of M L can be verified for two electrons as follows: 
letl;beII,withL = 11 + 12 , Then 

(7.46) 

or 

(7.47) 

Hence 

independent of M L- In any case, it can be argued that the matrix element 
of a scalar operator within the orbit space cannot depend on the choice of 
orientation of a co-ordinate system. 

What we have shown, therefore, is that eq. (7.42) with eq. (7.45) can be 
writtent 

<LMLII . . L ILML) 
<LM II. ILM' ) = I <LM I L ILM') (7.49) L I L L(L + I) L L 

or, in words, the matrix element of I; diagonal in L is proportional to the 
matrix element of L itself and the proportionality constant involves the 
expectation value of the projection of I; upon L. This is just the same as 
the result of the vector model. Thus finally the operator in eq. (7.38) can 
be replaced by the operator (L, S)L . S in the manner of the classical 
eq. (7.40) because we are only interested in its expectation value in the 
LSJMJ representation-the matrix element of eq. (7.38) is diagonal in 
Sand L. (L, S) can be regarded as a parameter associated with the term 
2S + 1 L. Since 

J2 = (L + S)2 = L2 + S2 + 2S . L (7.50) 

t This equation states a special case of the more general Wigner-Eckart Theorem. All the 
M cdependence is in the matrix element (LM LILILM~>. 
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or 

(7.51 ) 

we have 

f..E = (yLS1MJ I ((L, S)L . SlyLS1MJ ) 

= t((L, S){J(J + 1) - L(L + 1) - S(S + I)}. (7.52) 

This result depends on J, and the degeneracy with respect to 1 has been 
lifted. Each fine structure component (L, S, 1) of a term (L, S) is called a 
level. The energy of each level is still independent of M J so there is still a 
(21 + I)-fold degeneracy of each level with respect to M J . Singlet terms 
are not split by the spin-orbit interaction (hence the name) for when 
S = 0, 1 = L and in eg. (7.52) f..E = 0. Similarly S-terms are not split, 
because L = 0 and 1 = S. 

Let us consider as an example a 3p term, for which S = 1, L = 1 and 
the possible values of 1 are 2, 1, O. The energies of the levels 3p 2, 3p \ and 
3p 0 are displaced from the 3p term energy by 

f..Ee p2) = (ep), 

f..Eep\) = -(ep), 

f..Eepo) = -2(ep), 

from eg. (7.52). This is illustrated in Fig. 7.4, in which (ep) has been 
assumed to be positive. When ( is positive the level with lowest 1 lies 
lowest and the fine structure multiplet is said to be normal. If ( is negative 
the multiplet is inverted. We see that the energy intervals between 1 = 2 
and 1 and between 1 = 1 and 0 are in the ratio of 2 : J . 

I 
~ 
I 3 p ___ -,--.;-

t 
2{ 

I ____ ~ ~ 
t 2{ 

I 
, 
t 

31'\ 

3pO 

Fig. 7.4. The splitting of the 3p term according to the interval rule in LS coupling. 

In general the energy difference between adjacent levels is, from eg. 
(7.52) 

f..E(J) - f..E(l - J) = t({J(J + 1) - (J - 1)1} = (1. (7.53) 

128 



7.3. Fine structure in LS coupling 

This equation expresses the interval rule in LS coupling: the energy 
difference between adjacent levels is proportional to the larger value of 1. 
Departures from the interval rule indicate the presence of interactions 
other than the spin-orbit interaction, or more commonly a breakdown of 
the LS coupling approximation because the spin-orbit interaction cannot 
be considered as small compared with the residual electrostatic inter­
action. The spin-orbit interaction can have matrix elements off-diagonal 
in Land S, but diagonal in J, so it can mix together states of different 
Land S but of the same J. The result in second-order perturbation theory, 
according to eq. (B.5) of appendix B, is an energy shift 

I1EiSLJ) 

__ ", <SLJ[ Li ~ili . Si [S'L'J) <S'L'J[ Li ~ili . Si [SLJ) 
1.... (7.54) 
S'L' ESL - ES'L' 

which has the effect of shifting a level downward if it lies below the per­
turbing term in energy and upward if it lies above. In general, levels of the 
same J in different terms of a configuration repel each other in energy as a 
result of second-order perturbation, The term values are affected by this 
(see the experimental results following eq. (7.16» and also the interval 
rule is violated. 

To return to the example of the 3pz 3p ground term ofSi I (Fig. 7.2): the 
fine-structure splitting parameter is (ep) = 74·02 cm - 1 and the energy 
!eveldifferences are Eepz) - Ee p l) = 146'16cm- I ,ECPI) - ECPo) = 
77·15 cm - I. Thus the interval rule is quite well obeyed, By contrast, in the 
term 3p4p 3p (Fig. 7.1) (CP) would be 52,72 cm -I in perfect LS coupling, 
but the energy differences are Eepz) - EePI) = 128·06 cm- I and 
EeP 1) - ECPo) = 32·38cm- 1

. There is considerable departure from the 
interval rule. 

For a single electron the quantity 

of eq, (7.37) depends on the central potential V. In the nlm/ms representa­
tion the spin-orbit operator for one electron has the expectation value 

(7,55) 

where 

(nl) = rx: Rnl~(r)Rn/rz dr. (7.56) 

(nl) is a single-electron parameter depending on the radial part of the 
wave function. For a pure Coulomb field VCr) x llr and llr . d Vldr x 

129 



Angular problems in many-electron atoms 

I/r 3
, so (nl) X <r- 3 >. The angular part of the integration in eq. (7.55) 

follows from the fact that the operator I . s can be expressed as 

(7.57) 

and of the three terms in eq. (7.57) only Iz 5= has matrix elements diagonal 
in m l and ms. 

Our next problem is to relate the (SL) for a term to the (nJJ of the 
individual electrons of a configuration to which the term belongs. To do 
this we make use of a sum rule which depends on the invariance of the 
sum of diagonal matrix elements under a transformation from the 
LSM LMS scheme to the nJiml,ms, scheme. The rule states that for a given 
M L = Li ml

i 
and Ms = Li m" the sum over terms of the diagonal matrix 

elements of .Yf2 = Li ~(r;)Ii . Si in the LSMLMs scheme is equal to the 
sum over determinantal states of the matrix elements of .Yf1 in the 
nJiml,m'i scheme. Now in the yLSMLMs representation 

<yLSM LMSI Yf2 1yLSM LMs> = <'yLSM LMSI (LS)L . S lyLSM LMS> 

= (LS)M LMS' (7.58) 

In the nJim/,m" scheme, since '#2 is of the form of a sum of single-electron 
operators L;'/; whose properties we have discussed in connection with 
eq. (7.23), that is since 

(7.59) 

the diagonal matrix element of .Yfl for an N-electron anti-symmetric 
function It/l",> is 

(7.60) 

where eq. (7.55) has been used to evaluate the single-electron matrix 
elements. The sum rule relates eqs. (7.58) and (7.60) as follows: 

L (yLS)M LMS = L (L (nJJmlimS): M L, Ms fixed. (7.61) 
terms det. 

state~ 

The application of eq. (7.6 I) is most easily seen when we have the terms 
and the determinantal states written out. as in table 7. I for the con­
figuration np2. Thus for ML = I, Ms = I there is only one term 3p on 

+ + 
the left-hand side of eq. (7.60) and only one determinant {l O} on the 
right-hand side, so 

(np2 3p) x I x 1 = (np) x 1 x ~. + (np) x 0 x t, 
or 

(7.62) 
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In the example of 3p2 3p of Si I we quoted (CP) = 74·02 cm - 1. This was 
actually derived from the fitted parameter (3p) = 148·049 cm -1. If one 
were to attempt a calculation with 3p wave functions and a central poten­
tial VCr), (3p) would be the quantity one would obtain from eq. (7.56). 

Let us take as a second example the npn'p configuration. Now for 
M L = 1, M s = 1 there are two terms 3D and 3p, and two determinants, 
+ + + + 

{l O} and {O l}, in the sums ofeq. (7.61): 

(npn'p 3D) + (npn'p 3p) = (np) x 1 x ~ + (n'p) x 0 x ~ 

+ (np) x 0 x ~ + (n'p) x 1 x ~ 

or 

(npn'p 3D) + (npn'p 3p) = ~(np) + ~(n'p). (7.63) 

We can get further than this by considering M L = 2, M s = 1, for which 
+ + 

there is one term 3D and one determinant {II}. Thus 

2(npn'p 3D) = ~(np) + ~(n'p). (7.64) 

Therefore from eq. (7.63) and (7.64) 

(npn'p 3p) = (npn'p 3D) = ±(np) + ±(n'p). (7.65) 

For shells more than half-full of equivalent electrons, niX, we have 
already remarked that the allowed terms are the same as for the con­
figuration nl N

-
x where N = 2(21 + 1). The fine-structure parameters 

for terms of these two configurations are the same in magnitude, but 
opposite in sign: 

(7.66) 

For example in the np2 configuration the level 3po is lowest, but for np4 
the fine structure is inverted and the 3p 2 level is the lowest level. 

Because of this symmetry about the half-filled shell it follows that the 
fine structure vanishes, in first order, for all terms of a half-filled shell in 
LS coupling: 

«nIN/2 LS) = o. (7.67) 

One finds in the tables of energy levels that experimental fine-structure 
splittings are listed for half-filled shell configurations, but these are small 
and are usually due to breakdown of the coupling scheme. 

Before we leave this section let us treat two cases of fine structure which 
we have left out of the discussion so far: the alkalis, and helium. 

In chapter 6 we have discussed the gross structure of the alkalis as the 
problem of one electron in a central field, which is not a Coulomb field 
because of the electrostatic screening by the electrons of the core. The 
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spin-orbit interaction IS the perturbation (eq. (7.37» for the single 
valence electron: 

£2 = ,;(r)1 . s; (7.68) 

The first-order energy shift is the expectation value of £2 in the Isimj 
scheme as in eq. (4.25) for hydrogen: 

11£ = ~<~. dV 1 . s' 
2m2c2 r dr '/ 

(7.69) 

The angular part is 

<Isim) 1 . s I/sim) = Hi(J + 1) - l(l + 1) - s(s + I)} (7.70) 

and the radial integral, eq. (7.56), can be written, in analogy with eq. (4.26), 

112 Z <,2 
~(nl) = __ ~ <,.-3). 

2m 2 c2 41[1;0 
(7.71 ) 

Zeif<"- 3) is often treated as a parameter to be evaluated from experiment. 
Thus eq. (7.69) becomes 

11£ = !(n!){j(J + I) - l(l + 1) - ~} 

since s = !, or in terms of the Bohr magneton 

(7.72) 

2S terms are not split, having the valuei = ! only, but all other terms are 
doublets with a separation between the i = 1 + ! and i = I - ! levels 
given by 

(7.74) 

If the central field were a pure Coulomb field Zeff<"- 3) would be 

Z4 

from table 2.3. To take account of the penetration of the core Lande 
modified this expression by replacing Z4 by Z; Z 6, and n3 by n *3. Zo and 
n* are the quantities appearing in the gross structure of the alkalis, eqs. 
(6.32) and (6.33), and Zi is an effective 'inner' charge which must be 
treated as a parameter. As a very rough guide Zi ~ Z - 4 for p-electrons 
and Zi ~ Z - 11 for d-electrons. The Lande formula for the doublet 
splitting is therefore 

2 Z;Z6 
I1W = IX *311 Rydbergs. 

n ( + 1) 
(7.75) 
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The splitting of the lowest 2p term in the alkalis increases with Z: 
t.W(3p, Na) = 17·2 cm- I

; t.W(4p, K) = 57·7 cm- I
; t.W(5p, Rb) = 

237·6 cm - I; t. W(6p, Cs) = 554·1 cm -I. For a given element t. W also 
falls off rapidly with increasing n and I. There are, however, anomalies in 
the magnitude of the fine-structure splitting in the alkalis which we shall 
not discuss. 

The second example we want to discuss is the fine structure of the I snp 
3p terms of helium: in particular we shall refer to the Is2p 3p term. Next 
to hydrogen, helium is the lightest element and the spin-orbit interaction 
is very small. Just as in hydrogen, one might expect that other contribu­
tions to the fine-structure splitting are comparable with the spin-orbit 
interaction and this is indeed the case. 

As a non-relativistic approximation to the two-electron problem one 
can formulate the following magnetic interactions (already mentioned in 
chapter 5) which arise from relativistic effects: orbit-orbit, spin-other­
orbit, and spin-spin in addition to the spin-orbit (i.e., spin-own-orbit) 
interaction already considered. Of these the orbit-orbit interaction does 
not contribute to a splitting of the term, only to a shift, so it can be ignored 
for the purpose of considering fine structure. In LS coupling the spin­
other-orbit interaction can be written in an effective form ('(yLS)L . S 
just like the spin-orbit interaction. However, the parameter (' is different 
and in particular it does not depend on Z as strongly as the spin-orbit 
parameter (this partly accounts for the fact that it can be neglected in 
comparison with the spin-orbit interaction for large Z). Because of its 
angular form the spin-other-orbit interaction does not give a departure 
from the interval rule in LS coupling. The spin-spin interaction has quite a 
different form and does break down the interval rule. It may be written 
in the classical form of the interaction between two magnetic dipoles with 
magnetic moments proportional to SI and S2 separated by a distance r 12: 

Po 2 {S1 . S2 (SI . r 12)(S2 . r 12)} 
- 4PB --3- - 3 5 . 
4n r 12 r 12 

(7.76) 

The effect of the three spin-dependent interactions in determining the 
fine structure of the Is2p 3p term of helium is shown in Fig. 7.5. The spin­
orbit interaction gives a normal triplet obeying the interval rule. The 
addition of the spin-other-orbit interaction inverts the structure in this 
particular case but maintains the interval rule. The spin-spin interaction 
grossly distorts the structure, even putting the i-levels out of their normal 
order. The experimental splitting, which is only about I cm - 1 overall, is 
shown on the right. The small disagreement between theory and experi­
ment is attributed to the approximations made in dealing with these small 
effects. 

The spin-spin interaction, so important here, is not the main cause of 
departures from the interval rule in heavier elements. It is relatively 
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unimportant compared with breakdown of the LS coupling scheme due to 
the large size of the spin-orbit interaction. For example, the spin-spin 
interaction may often contribute only about I cm - 1 to a shift of the levels 
in a fine structure which extends over several thousand wavenumbers. 

J J 

0 0 J I 
0·988 cm- 1 

/ 

f 
0 

1s 2p 3p 

~ ~ 
2 1 
1 2 

0·076 cm- 1 

0 5-0 

+ 
s-o-o 

+ Exp s-o s-o+ s-o-o s-s 

Fig. 7.5. The fine-structure splitting of the 1 s2p 3p term of He I. The contributions of the 
spin-orbit (s-o), spin-other-orbit (s-o-o), and spin-spin (s-s) interactions are shown 

cumulatively. The experimental splitting is on the right. 

7.4. Relative intensities in LS coupling 

Having discussed the structure of the energy levels in LS coupling we 
must now investigate what is observed experimentally, namely the 
spectral lines resulting from transitions between the energy levels. We 
need to know the selection rules for t.L, t.S, and t.J, particularly in electric 
dipole radiation. Relative intensities in single-photon transitions from 
one multiplet to another depend on the square of the matrix element of 
the multipole operator. For electric dipole radiation this is 

l<ySLJI L eri Iy'S'L'J')1 2
. (7.77) 

The easiest way to remember all selection rules is to apply a perfectly 
general rule which is soundly based in the theory of tensor operators. 
While that theory is too sophisticated for us to discuss it here we can 
nevertheless treat the rule as a mnemonic. We need to know the tensor 
rank, k, of the multipole operator and the space in which it operates. For 
example, the electric dipole operator of eq. (7.77) is a vector (a tensor of 
rank one; k = 1) and it operates in the total space of the electrons (label 1), 
in orbital space, whether coupled (L) or not (I), but not in spin space (S). 
The electric quadrupole operator on the other hand is a tensor of rank 
two, k = 2, but it operates in the same spaces as the electric dipole operator. 

The rule is: the tensor rank k of the multipole operator and the angular 
momentum quantum numbers of the two stares involved in the transition 
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must satisfy a triangular condition for each space in which the operator 
acts. 

Thus for electric dipole radiation we have the following selection rules: 
Li eri operates on the electrons, so k = 1, J, and J' must satisfy a tri­
angular condition, hence 

!J..J = ± 1, 0, but J = ° + J' = 0, (7.78) 

since the lengths 1, 0, ° do not form a triangle. Li eri does not operate in 
spin space, so S' = S or 

!J..S = 0. (7.79) 

In L-space, 

!J..L = ±1,0, butL = O+L' = 0. (7.80) 

In the orbital space of single electrons the selection rule is 

Mi = ±1, (7.81 ) 

The transition Mi = ° is not allowed because of parity considerations. 
Since Li eri is odd under a parity transformation the parity of the con­
figuration, (_1)1:,1" must change in electric dipole radiation. The simul­
taneous jumping of two electrons is a rarer case which we shall not discuss. 
It occurs when there is strong configuration mixing, but even then the 
parities of the initial and final state must be different. 

The selection rule for J is a strict one independent of the type of coupling 
of the orbital and spin angular momenta. But the rule, !J..S = 0, for 
example, can be violated if the LS coupling is broken down by the spin­
orbit interaction; then, of course, S does not strictly describe a constant 
of the motion for the stationary states. When S changes one speaks of 
intercombination lines. These are not uncommon. For example, the 
well-known mercury line 2,537 A arises from the transition 6s2 ISO-
6s6p 3p 1 from the lowest excited triplet to the 6s2 

1 So ground state. One 
expects to find, together with the appearance of this line which is for­
bidden in LS coupling, a departure from the interval rule in the 3p term. 
This is the case. The spin-orbit interaction has matrix elements off­
diagonal in Sand L and it mixes the levels 1 P 1 and 3p 1 of the 6s6p con­
figuration; thus the 3p term is not pure. The admixture of the 1 P 1 level 
accounts for the non-zero intensity of the line 2,537 A because the ISO-
1 P 1 transition is allowed in the zeroth-order approximation of LS 
coupling. In addition, the line is quite intense. The reason is that the 
intensity of a line is proportional not only to the transition probability 
but also to the population of the upper level, and the population of the 
3p 1 level is high because of cascades from higher levels. The only mode of 
decay of this level by radiation is via the line 2,537 A to the ground state. 
The transition 6s2 ISo-6s6p 3po is not observed because its appearance 
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would violate the strict selection rule for J (the spin-orbit interaction 
does not mix levels of different J). The 6s6p 3PO level is therefore metas­
table. 

The members of a group of spectral lines which arise from the transition 
from one multiplet to another in LS coupling, and which satisfy the 
selection rules for electric dipole radiation, have relative intensities which 
are proportional to the square of the electric dipole matrix element given 
in eq. (7.77). The angular factor in this expression, depending on S, L, J, 
S', L', J', can be worked out once and for all, and tables of relative intensi­
ties have been compiled by White and Eliason.t The formulae themselves 
are quite complicated expressions in terms of the angular momentum 
quantum numbers and we shall not quote them here, but there are certain 
trends which are easy to remember and which help to give a feel for 
relative intensities. They are the following: (a) for a change!!L ("# 0) in 
the transitions from one term to another in LS coupling the strongest 
lines are those for which !!J has the same sign as !!L. Of these, the intensi­
ties of the lines decrease as the magnitude of J decreases. The weakest 
lines are those for which !!J has the opposite sign from!!L. The lines with 
!!J = 0 are intermediate in intensity. (b) for a change!!L = 0 the strongest 
lines are those for which !!J = 0 and J is large. Again, the intensities 
decrease with decreasing J. For!!J = ± 1, the lines J -> J - I and J - 1-> 
J are equal in intensity, as would be expected from the symmetry of the 
situation, and are usually somewhat weaker than the strongest lines with 
!!J = O. 

There are also sum rules for intensities which we shall state shortly. 
But first let us consider an example of a group of transitions between 
fine-structure levels to illustrate not only the relative intensities but also 
the analysis of the observed frequencies and the deductions which can be 
drawn from such an analysis. 

Let us consider a group of six lines lying close together near 4,450 A in 
the spectrum of Ca I. Their wavenumbers are 22,432'3,22,436'0,22,441'6, 

c 

b 

a 

o 9·3 
3·7 

e 

vcm- 1 _ 

Fig. 7.6. A group of six lines in the spectrum of Ca I. The relative intensities, a~f, and 
the relative wavenumbers are shown. 

t These tables are reproduced in Kuhn and in Condon and Shortley for example. 
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22,538'1, 22,541'8, 22,590'3 cm- t
. The wavenumbers of these six lines 

relative to that of the lowest frequency line, together with their intensities, 
marked a, b, c, d, e, f are shown in Fig. 7.6. In order to identify the energy 
levels connected by this group of transitions we can examine the fre­
quency differences and the intensities. Since experimental measurement of 
intensities is much less reliable than measurement of frequency we shall 
concentrate on the frequencies and conclude what we can from them, 
using the intensities only as confirmation of the results. We know that 
calcium has two valence electrons, giving singlet and triplet terms. We 
assume that LS coupling is valid and that the six lines arise from transi­
tions between two triplet terms (~S = 0). We therefore look for an inter­
val rule which will show up as the ratio of small integral numbers between 
some of the frequency differences. We find that 

9·3 - 3·7 5·6 3 
3·7 - 0 = 3·7 ~ 2; 

and 

105·8 - 0 105·8 2 
158·0 - 105·8 = 52·2 ~ l' 

It is also helpful to note that the difference 3·7 cm - t appears twice: 
(3'7 - 0) and (109'5 - 105'8), an example of the Rydberg-Ritz com­
bination principle. We therefore suspect that, according to the interval 
rule, the levels J = 3, 2, I occur in one term, which must therefore be a 3D 
term, and the levels J = 2, 1,0 occur in the other, which must be a 3p term. 
On this information we can now construct an energy level diagram, 
assuming normal multiplets, with transitions obeying the selection rules 
~L = -1 ep - 3D) and ~J = 0, ± 1. This diagram is shown in Fig. 7.7. 
The theoretical relative intensities are indicated below the energy-level 
diagram. 

The configurations and terms involved in the group of lines are actually 
4s4d 3D and 4s4p 3p. From the fine structure of the terms, in which the 
interval rule is quite well obeyed we conclude that 

(4s4d 30) = l'9cm- t
, 

(4s4p 3p) = 52·8 cm- t . 

We can go further and use eq. (7.61) to find the (nJ). Since 14s4d 3D; 
+ + 

ML = 2; Ms = 1> = {O 2}, we obtain 

2(4s4d 3D) = 2 x ! x (4d) 

or 

(4s4d 3D) = !(4d), 
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and since 

+ + 
14s4p 3p; ML = I; Ms = I) = {Ol}, 

(4s4p 3p) = ~(4p). 

Hence (4d) = 3·8 cm - 1 and (4p) = 105·6 cm - 1. 

-4~ ____ -. ____ -+~ ____ +-______ 3~ 

105·8 cm- 1 

--------~-----due------~------3~ 

52·2 cm- 1 

--------~------------~------3Po 

100 

179
1 

1,2,1 
23·8 

I 
vcm-l~ 

Fig. 7.7 The structure of the 4s4d .ID and 4s4p -'p terms in Ca I, with the transitions 
between them. 

Now let us consider the relative intensities. We confirm that the strongest 
line, for I1L = - 1, is the one with I1J = - 1 involving the largest J: 
3PZ-303' Also the other two lines with I1J = -1, 3P 1_ 3 0 2 and 3PO-

30 1 , are less intense the smaller J is. The weakest line is that for which 
I1J = + 1 where the sign of I1J is opposite to that of I1L: the line 3p 2-301' 

In fact this line is so weak that it might be difficult to detect. The lines 
3P Z-

3
0 2 and 3P 1_ 3 0 1 are intermediate in intensity. 

The sum rule which relates the relative intensities in transitions between 
two multiplets in LS coupling is the so-called Ornstein-Burger-Oorgelo 
sum rule: the sum of the intensities of all the transitions from an initial 
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level or to a final level of a multiplet is proportional to the statistical 
weight, 2J + 1, of that level; the constant of proportionality is common 
to all levels of a given multiplet. Thus in our example of the transitions 
3p_3D the sums from the initial levels of the term 3D give: 

J = 3: 

J = 2: 

J = 1: 

c = 7k, 

b + e = 5k, 

a + d + f = 3k; 

and the sums to the final levels of the term 3p give 

J' = 2: 

J' = 1: 

J' = 0: 

a + b + c = 5k', 

d + e = 3k', 

f= lk'. 

Taking ratios within a multiplet to eliminate the constants of propor­
tionality k and k', and fixing arbitrarily one intensity on a relative scale, 
say c = 100, one obtains four equations and five unknowns, so the sum 
rule by itself is insufficient to determine the relative intensities in this case, 
and one would have to know at least one ratio of electric dipole matrix 
elements. But conversely, one can easily verify that the relative intensities 
given in Fig. 7.7 do satisfy the sum rules. 

In a simpler case, such as 2p_2D, one can find the relative intensities 
by the sum rule alone. Referring to Fig. 7.8 we see that 

q 6 
for 2D, ~ 

p+r 4 

p+q 4 
for 2p. ~ 

r 2 

Hence 

q:r:p = 9:5: 1. 

Returning to the example of the transitions between the terms 3D and 
3p we notice that the fine structure of the 3D term is much less than that of 
the 3p term. In the limit when the structure of the 3D term is completely 
unresolved there remain only three lines in the spectrum with intensities 
in the ratios 5: 3 : 1. These numbers are just the statistical weights of the 
levels of the 3p term. In the limit when the structure of the 3p term is also 
completely unresolved there is just one line whose frequency is at the 
centre of gravity, or weighted mean, of the lines of the resolved spectrum. 
Since in LS coupling the perturbed levels are shifted from the position of 
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the unperturbed term by 

~E = tS{J(J + I) - L(L + I) - S(S + I)} 

(eq. (7.52», the identity 

(2L + 1)\2S + I) ( J=~*~SI (21 + 1)-!-{1(1 + I) - L(L + I) 

- S(S + I)} = 0 (7.82) 

simply states that the weighted mean of the energies of the levels belonging 
to a term coincides with the energy of the unperturbed term. The use of 
this identity together with a procedure of taking moments (intensity 
times displacement) about the centre of gravity of a group of lines 
corresponds exactly to the use of the sum rule for intensities in LS 
coupling (see problem 7.9). 

2 ---r+---r-----r------- 2 2~ °:5:
12
: 

--L-.l.---1----2
!7J12 

2 
-----~:------. P'/2 

9 

I 
5 

I 
v-

Fig. 7.8. Transitions between levels of the terms 2D and 2p, with relative intensities 
q:r:p = 9:5:1. 

7.5. The j-j coupling approximation and other types of coupling 

We have discussed, for a central field, the approximation in which the 
residual electrostatic interaction between electrons is large compared 
with the spin-orbit interaction. This approximation is called LS coupling 
because L = Li Ii and S = Li Si are constants of the motion when the 
interaction between spin and orbit can be neglected. 

We now turn to the other extreme in which, in a central field, the spin­
orbit interaction is large compared with the residual electrostatic inter­
action. This case occurs in some configurations of heavy elements. It is 
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called j-j coupling for the following reason: if the residual electrostatic 
interaction between electrons is neglected, the electrons move quite 
independently of each other in a central field, each electron separately being 
subject to a spin-orbit interaction. Therefore the representation (/isjimJ 
is appropriate just as in a one-electron atom, where 1 = Ii + Si. Ii and Si 

couple up to form a resultant t which is a constant of the motion because 
there are no torques on one electron due to the others (the only effect of 
the other electrons is a contribution to the central field, a screening effect: 
it is the non-central interaction with other electrons which is being neg­
lected). Thus the vector model pictures a rapid precession of each Ii and 
Si about their resultant i;. The residual electrostatic interaction applied 
afterwards as a small perturbation causes a much slower precession of the 
i about their resultant J which is a constant of the motion in both the LS 
and j-j coupling schemes (see Fig. 7.9). But in the j-j coupling scheme L 
and S have no meaning. 

Fig. 7.9. Vector model for the angular momenta of two electrons in j-j coupling. 

Let us consider the energy shifts caused by the spin-orbit interaction in 
j-j coupling. We start with a pure configuration of independent electrons 
and we apply the spin-orbit interaction 

(7.83) 

in first-order perturbation theory. The energy shift is the diagonal matrix 
element of £'2 in the (n;!isjiJMJ) representation, which is the representa­
tion (e) of section 7.1 (the representation (d), (n;!isjimj), would do equally 
well because ff2 commutes with If, sf, if and jZi as well as with J2 and Jz): 

tiE = 2: (nJ;s;j;lMJI ;(r;)l; . S; InJ;s;j;JMJ) = 2: tiE;, 
; 

where 

(7.84) 

(7.85) 

141 



Angular problems in many-electron atoms 

Equation (7.84) just expresses the fact that the energy shift is the sum of the 
shifts for each independent electron. The levels remain degenerate with 
respect to J and M j • The degeneracy with respect to J is lifted by the small 
electrostatic interaction between electrons; in applying this perturbation 
in first order the representation (nJisjiJMj) is appropriate but (nJisjimj) 
is not because Li > j eZ /4nsOrij does not commute with jz,. 

The notation in j-j coupling is one which names, in a two-electron 
configuration for example, Ij, Iz,jj,jz and J. Thus for the npn's configura­
tion a level is denoted by (Ph' sj,)j for which the possibilities areji = Ii ±t 
(Ii "# 0), J = jl + j2" .. , lil - j21: (Pl'2, S1!2)1. (PI/2, s1i2)O, (Pm, SI'2h, 
and (P3/2, s 1 /2)1' The number of levels, four in this example, is the same in 
j-j coupling as in LS coupling, with the same four values of J which is a 
constant of the motion in both schemes. In LS coupling we have for the 
configuration npn's the four levels IP 1• 3po, 3P 1 • 3P2 . 

Let us now consider an example of two valence electrons inj-j coupling. 
The configuration np(n + I)s in heavy elements is one which is often 
quoted. for example the 5p6s configuration of Sn I (Z = 50). Here we 
have to deal with (5p) because the s-electron does not have spin-orbit 
splitting. (5p) which is proportional to < I/r . d V/dr), or Zeff<r- 3), for 
the 5p electron is large. about 2.700 cm - I-the splitting is about 4,000 
cm - 1 (see Fig. 7.10). The loosely bound 6s electron hardly affects the 
magnitude of Zeff<r- 3)Sp at all, for when it is removed the spin-orbit 
splitting in the ground term 5p 2p of Sn II is almost the same--4.25I cm - 1 

5p6s 

4018 cm- 1 

Sn I 

Z 
--;-- 1'1/2 

5p 

4251 cm- 1 

Sn II 

Fig. 7.10. The splitting of the 5p6s configuration in Sn I as an example of f-i coupling 
compared with the splitting of the 5p configuration in Sn II. 
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-as in the configuration 5p6s of Sn 1. The same kind of comparison can 
be made for Bi II 6p7s and Bi III 6p zP, for example, where the spin-orbit 
interaction for the 6p electron gives a splitting in both cases of about 
20,000 cm -1 (notice the very large magnitudes of spin-orbit interaction 
which we are talking about in j-j coupling). 

The residual electrostatic interaction in 5p6s of Sn I accounts for the 
splitting of only 273 cm- 1 between (P1/Z, SI/Z)O and (PI/Z, SI/Z)I, and of 
628 cm - 1 between (P3/Z, s 1/Z)z and (Pm, s 1/Z)1 (see Fig. 7.10). The electro­
static splitting in an npn's configuration arises only from an exchange 
effect as in eqs. (7.11) and (7.12) in which the Slater exchange integral G1 

determines the splitting (Fo is common to all levels of the configuration). 
One concludes from the experimental data for our example that the over­
lap between the 5p and 6s wave functions is already small, and one would 
expect that it would become even smaller as n', the principal quantum 
number of the s-electron, increases and hence that the j-j coupling scheme 
would become a better and better approximation. In view of the absence 
of spin-orbit interaction for the n's electron perhaps it would be better to 
refer to the coupling as j-s coupling in this case rather than j-j coupling. 

Along the sequence np(n.+ 1)s from light to heavy elements, for 
example C(2p3s), Si(3p4s), Ge(4p5s), Sn(5p6s), there is a progression from 
LS to j-j coupling. Ge(4p5s) is an example of intermediate coupling for 
which neither L, S nor j1, .iz are even approximately good quantum 
numbers. That is to say, the two perturbations, residual electrostatic and 
spin-orbit, are of the same order of magnitude. To calculate the energy 
levels in intermediate coupling one would have to go to the trouble of 
solving a secular equation in which both interactions are treated on an 
equal footing. 

In the lower-lying configurations of neutral atoms the j-j coupling 
approximation is not often found, in other words the conditions for small 
electrostatic interaction are not often satisfied, even in heavy elements. 
For example the 5s5p configuration of Cd I (Z = 48) gives rise to quite a 
different situation from that of 5p6s in Sn I (Z = 50). In Cd the value of 
( 5p) is of the order of 1100 cm - 1, compared with ( 5p) - 2,700 cm - 1 in 
Sn, but the electrostatic splitting between the 1 P and 3p terms is about 
13,000 cm - 1, so the LS coupling approximation is much more appro­
priate. 

Other types of coupling scheme are sometimes met in special cases. 
One such case is found in the rare gases when the core has one hole and 
there is one electron which is on the average far away from the core, for 
example, the configuration 3p54f in argon. The 3p 5 configuration by 
itself is appropriately described in LS coupling by L 1, SI' and J 1 : the 
levels are Zp liZ, 3/Z, and the spin-orbit interaction of the hole gives a 
splitting of about 1,400 cm - 1 between J 1 levels. The electrostatic inter­
action between the distant 4f electron and the 3p electrons is too weak to 
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Angular problems in many-electron atoms 

destroy 11 as a good quantum number, so we retain 11 and form a new 
quantum number K, where K = J 1 + I and I is the orbital angular 
momentum of the outer electron (the 4f electron in this case). This small 
electrostatic interaction accounts for a splitting of the order of 20 em - 1 

between different K levels for a given 1 1: K = 11 + 1,1[ + I - 1, ... , 
[11 - 1[. Finally the spin-orbit interaction for the 4f electron is weakest 
of all, splitting each (J [, K) level into two 1 levels: 1 = K ± 1- This 
splitting is less than 0·5 em - 1. When the various interactions differ by 
orders of magnitude in this particular way one speaks of 1 1-1 coupling 
for which the following notation has been devised: first one writes the 
L 1SJ1 for the core, e.g., ep 3IZ)' then nl of the valence electron, 4f, then 
K, the resultant of 11 and I, in square brackets with the total angular 
momentum of the atom, 1, as a subscript. Thus: CZP 3IZ)4f[3!J3' 

In closing this chapter we should repeat that the LS coupling approxi­
mation is by far the most common basis for a description of the simple 
atomic spectra. 

Problems 

(Those problems marked with an asterisk are more advanced.) 

7.1. Show that lJ;;jj.-sl (21 + 1) = (2L + 1)(2S + 1), and hence that 
the number of non-degenerate states of a term is the same in the (LS1M]) 
representation as in the (LSMLMs ) representation. 

7.2. Use the branching rules to write out the terms of the npn'dn"p con­
figuration. Note that terms of a given L, S occur more than once. Dis­
tinguish these by naming their parents. 

7.3. By using the rule that for the terms of two equivalent electrons S + L 
must be even, write out the allowed terms of the configurations ndz, np, 
ng 2

. 

*7.4. It is a property of determinantal product functions that matrix 
elements, between such functions, of a sum of single-particle operators 
"LJ;, are just the same as if simple product functions had been used. It is 
worth verifying this by brute force for a simple case, say a 2 x 2 deter­
minant 

and an operatorf~ + f~. 

2 - 1 zlUa(l) 
ub(l) 

Hence verify for a p6 configuration that in the central-field approxima­
tion <"Li ~(rJli . s) vanishes when the sum is taken over all electrons of a 
closed shell. 

*7.5. For the np2 configuration show that, in terms of the determinantal 
product states with m l , + m l2 = 0 and m" + m'2 = 0 the LS coupled 
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states with M L = 0 and Ms = 0 are 

+ - +- +-
liS; 0, 0) = (3)-1/2{l -l} + (3)-1/2{-1l} - (3)-1/2{00}. 

7.6. The Lande formula for the doublet splitting in the alkalis is given in 
eq. (7.75). From the following data for the lowest 2p terms work back­
wards to evaluate Zi and hence test the empirical formula Zi = Z - 4 
for p-electrons: 

Element 
n 
.-1W(np)(cm -I) 
b(P) 

Na 
3 

17·2 
0·884 

K 
4 

57·7 
1·767 

Rb 
5 

237·6 
2·714 

Cs 
6 

554·1 
3·623 

7.7. By considering classically the potential energy of interaction of two 
magnetic dipoles JlI = 2PBSI and Jlz = 2PBS2 separated by a distance '12' 
show that the magnetic spin-spin interaction between two electrons in an 
atom can be written 

7.8. Write down the selection rules for electric quadrupole radiation in 
the LS coupling approximation. 
7.9. Consider the transition 2p_2D in LS coupling, and let the intensities 
of the fine-structure components be p, q, and, as in Fig. 7.8. By taking 
moments about the centre of gravity of this group of components and 
using eq. (7.82), evaluate p, q in terms of, and show that this procedure is 
equivalent to the use of the sum rule for intensities. 
*7.10. What are the allowed terms of the configuration np3') Use the 
diagonal sum rule, eq. (7.61), to show by brute force that (( np 3 LS) = 0 
for each of the terms of this half-filled shell configuration as stated in 
eq. (7.67). 

*7.1 I. What are the allowed terms of the configuration nd 3 ? Note that 
this is the simplest configuration of equivalent electrons for which a term 
of given Land S occurs more than once. 
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8. Interaction with static 
external fields 

In this chapter we consider the effect of applying a static magnetic or 
electric field along the z-axis. Such a field establishes the z-axis as a 
preferred axis in space, and so we expect the degeneracy in magnetic 
quantum number to be lifted, or partially lifted. 

8.1. Zeeman effect in LS coupling 

We consider first the interaction of the atomic electrons with an external 
magnetic field B. This gives rise to the Zeeman effect. We treat the inter­
action as a small perturbation, written in the classical form 

.1('>[ = - JI . B (8. I) 

where JI is the total magnetic moment of the electrons. From eqs. (4.4) 
and (4. I 2) JI is written in terms of the orbital and spin magnetic moments: 

(8.2) 

where the orbital and spin g-factors, gl == I and gs ~ 2, are defined here 
to be positive numbers. Thus the sign of III with respect to I, Jll = - flBL 
and of Jls with respect to s, Jls = - gsllBS' is kept explicit and is not incor­
porated in the g-factor. 

It is important to consider the size of the perturbation ·YfM compared 
with other terms in the Hamiltonian. We assume that the LS coupling 
approximation is valid, so that the zeroth-order Hamiltonian contains 
the central field, eq. (7. I), and the residual electrostatic interaction, 
eq. (7.2), which is assumed to be large compared with the spin-orbit 
interaction, eq. (7.3). We also include the spin-orbit interaction in the 
zeroth-order Hamiltonian, thereby making the assumption that it is large 
compared with the Zeeman interaction. This approximation is the weak­
field case, meaning that the energy splitting, ~ flBB, produced by the 
external field is small compared with the fine structure, ~ ((LS) ~ fIBBin" 
or that B is weak compared with the magnetic field Bin, internal to the 
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8.1. Zeeman effect in LS Coupling 

atom. The criterion B « (/ JiB for a weak field leads to a value of B for a 
typical case of ( ~ 100 cm - 1: B« BinI ~ 100 T. Thus it is not very 
often that the weak-field condition will be violated. Put another way 
round, commonly attainable laboratory fields of B ~ I T will be weak if 
( » fiBB ~ I cm - 1 . 

In weak field, therefore, we consider a fine-structure level labelled by 
(yLSJ), that is, the level J is isolated from other levels (yLSJ'). In first­
order perturbation theory the Zeeman energy shift is 

We may write YfM in the effective form 

.1t'M = fiB(L + gsS) . B 

= fiBB(L z + gsSz), 

(8.3) 

(8.4) 

which is an appropriate form for LS coupling. Although the zeroth-order 
eigenfunctions of eq. (8.3) are degenerate in M J , we can proceed as in 
non-degenerate perturbation theory because YfM commutes with Jz = 
L z + Sz· 

B 

L 

Fig. 8.1. Vector model for 11. showing the projections first on the direction of J and then 
on the z-axis. 

To evaluate the matrix element of L z and of Sz we take the projection of 
L on J first and then project on to the z-axis in a manner analogous to 
eq. (7.49). The vector model (see Fig. 8.1) says that Land S are precessing 
rapidly about J with a rate of precession proportional to (LS) and J is 
precessing slowly about the z-axis with a rate proportional to fiBB (<< 
(LS) ). 
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Interaction with static external fields 

Thus we write 

L·J 
(yLSJMJi Lz iyLSJMJ ) = <yLSJMJi J(J + 1) Jz iyLSJMJ ), (8.5) 

and similarly for Sz. Now 

S . S = (J - L) . (J - L) = J2 + U - 2L . J, (8.6) 

therefore 

Similarly 

S . J = !(J2 - U + S2). 

The energy shift becomes 

AE = f-1B B<yLSJMJi !{(J 2 + L2 - S2) 

+ gs(J 2 
- L2 + S2)} J(JJ~ I) iyLSJMJ ) 

= {J(J + I) + L(L + 1) - S(S + I) 

2J(J + 1) 

(8.7) 

(8.8) 

J(J + 1) - L(L + I) + S(S + I)} 
+ gs 2J(J + I) PBBMJ (8.9) 

because iyLSJMJ ) is a simultaneous eigenfunction of L2, S2, J2, and Jz. 
But going back to eq. (8.1) we can define an effective operator for the total 
magnetic moment Ji. Since Ji is a vector operator and we require only its 
matrix element diagonal in J we can write, in analogy with equation (7.43), 

(Ji . J) 
Jieff = J( J + 1) J. (8.10) 

which is equivalent to the vector model prescription for projecting Ji on 
to J. The matrix element, diagonal in J, of the projection factor is inde­
pendent of MJo and we can therefore define an effective g-factor by 

where 

The energy shift is 
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AE = <yLSJMJi -f-1zBiyLSJMJ) 

= <yLSJMJi gJf-1BBJz iyLSJMJ) 

= gJf-1BBMJ' 

(8.1 I) 

(8.12) 

(8.13) 



8.1. Zeeman effect in LS coupling 

Comparing eq. (8.13) with eq. (8.9) we find 

J(J + 1) + L(L + 1) - S(S + 1) 
g] = 

2J(J + 1) 

J(J + 1) - L(L + 1) + S(S + 1) (8.14) 
+ gs 2J(J + i) . 

g] is called the Lande g-value. We see, according to the assumptions used 
to formulate it, that g] has meaning only in the weak field case. 

For singlets S = 0, and from eq. (8.14) g] = I, independent of L, S, 
and J; that is to say, in the absence of a resultant spin the Zeeman effect 
comes just from the interaction of the orbital magnetic moment of the 
electrons with the external field. Let us consider the splitting of aID 2 level 
as an example. For J = 2 the 2J + 1 possible values of M] are 2, 1,0, 
- I, - 2. According to eq. (8.13) the M] degeneracy of a level is lifted and 
each level J splits into 2J + 1 states, labelled by M]. The field-dependence 
of the energy of each state, which is linear in B in first order, is shown in 
Fig. 8.2. From eq. (8.13) one can express the expectation value of pz as the 
negative slope of the energy with respect to field: 

aE 
<pz) = - aB = -g]PBM ] 

where in the case of a singlet g] = 1. 

o 

MJ 

2 
1 
o 

-1 
-2 

B-

(8. I 5) 

Fig. 8.2. The energies of the Zeeman states of a singlet level as a function of magnetic 
field B. 

Now let us consider a transition between singlet levels III a weak 
magnetic field. The electric dipole selection rules for M] are 

AM] = 0, ± I;M] = 0+ Mj = OifAJ= 0. (8.16) 

These are related to the polarization of the electric vector (see section 
8.4): AM] = ° corresponds to an electric dipole oscillating in the z-
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Interaction with static external fields 

direction (n polarization) and llMJ = ± 1 corresponds to oscillation in 
the x-y plane (0" polarization). For a transition Ip1_1Dz, for example, 
at a given value of B the energy spacing between the states is J1BB, the 
same for each term. Therefore there are only three different frequencies 
symmetrically disposed about the zero-field frequency. They are given by 

(8.17) 

where hvo is the difference in energy of the unperturbed levels. These 
transitions are shown in Fig. 8.3. All three lines, separated by J1 BB/h, are 

2 

1 

'02--- 0 

-1 

2 

~- /'0 A --.../ "'----' ~ 

...... ,....~ 

" r-" ~ 
~ 

1 

'P,--- 0 

-1 

7T 

I I 
a 

I 
v~ 

Fig. 8.3. The components of the transition' P I_I O2 in a magnetic field, illustrating the 
normal Zeeman effect in transverse observation. 

observed when viewed transverse to the magnetic field: the nand 0" com­
ponents are plane polarized at right angles to each other. In longitudinal 
observation (along the field direction) the n component is missing and the 
0" components are circularly polarized in opposite directions. This so­
called Lorentz triplet of one n and two 0" lines is characteristic of the 
'normal' Zeeman effect in electric dipole radiation. The appearance of 
this normal Zeeman effect in spectral lines was explained by Lorentz in 
classical terms before the introduction of electron spin-the Zeeman 
effect itself was discovered as early as 1896 (see problem 8. J J). 
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8.1. Zeeman effect in LS coupling 

For the general case of transitions between multiplets in LS coupling 
the situation is different. This 'anomalous' Zeeman effect depends on 
the fact that gs =I- 1. For if gs were I in eq. (8.14) we should have gJ = I, 
independent of L, S, and J as in the normal Zeeman effect; in terms of 
the vector model, Fig. 8.1, J.l would lie exactly along J. However, this is 
not the case and the frequency of the transition (y' L'SJ' M~) --+ (yLSJMJ) 
is given by 

hv = (E' + f..E') - (E + f..E) 

= hvo + !lBB(q~M~ - gJMJ) (8.18) 

from eq. (8.13). 
Let us illustrate eq. (8.18) by reference to the sodium D lines: 2S 1/2-

2P 1(2 and 2S1!2-
2

P 3 / 2 . The fine-structure splitting between the 2p levels 
is 17·2 cm - 1, so (ep) is about II cm - 1. A magnetic field is weak in this 
context if B« ,(2p)IJIB ~ 25 T. The g-factors are 91eS 1 2) = 2; 
91( 2p 12) = ~; 91ep32 ) = 1 from eq. (8.14). Therefore the energy levels 
and transitions for a weak field are as shown in Fig. 8.4. 

The observation of the Zeeman effect has been used as an important 
aid in spectral analysis. After a tentative assignment of L, S, and J to the 
multiplets involved in a group of transitions has been made (along the 
lines of the example 3p_

3 D given in section 7.4), the qualitative nature 
of the Zeeman patterns and a quantitative measurement of the values of 
gJ can be used to verify the assignment because gJ depends on L, S, and J. 
Furthermore. if it happens that no assignment of angular momentum 
quantum numbers has been made initially. not even a tentative one. as 
may well be the case in a very complicated spectrum. the Zeeman effect 
can be a very powerful tool in the identification of levels. 

Many precise measurements of g;, particularly for ground levels, have 
now been made by the methods of radio frequency spectroscopy. Depar­
tures from the Lande g-value are caused by a breakdown of the LS 
coupling scheme, that is when the spin~orbit interaction is large enough 
to mix levels of different Land S (but the same J, because the spin~orbit 
interaction commutes with J2 and Jz). However, an experimental measure­
ment of gJ for an impure level is not a particularly sensitive test of the 
amount of impurity. For example, if the leveilyLSJ> has admixed into it 
the level IlL'S'J> with amplitude a, the departure of the measured gJ 
from the Lande value gJ(LSJ) is only (g;(LSJ) - g;(L'S'J))a 2

. If a is 
small a measurement of gJ does not determine a very well. Configuration 
mixing by the electrostatic interaction does not by itself introduce any 
departure from the Lande value whatever because Li> j e2 /4m;orij com­
mutes with L 2. S2. and J 2. and levels admixed in this way therefore have 
the same 9J. 

Let us now turn to the opposite extreme in LS coupling: the strong­
field case. The criterion for a magnetic field to be strong is !lBB » (yLS). 

151 



Interaction with static external fields 

MJ 
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Fig. 8.4. The Zeeman effect in the 0 lines of sodium, in transverse observation: 
(a) ZSI/Z-ZP1/Z; (b) 2S I / Z_ZP3/2' 

In view of the magnitudes already quoted this situation is likely to be 
realized only in light elements for which ( « 1 cm - I. 

For a strong field we have the following inequality for the Zeeman and 
spin-orbit interactions: 

I1BB(Lz + gsSz) » (yLS)L . S. (8.19) 

Therefore we omit the spin-orbit interaction as a first approximation, 
that is we remove it from the zeroth-order Hamiltonian which now includes 
only the central field and residual electrostatic interaction. The appro­
priate zeroth-order wave function is lyLSM LMS) as for a term. There is 
no interaction between spin and orbit, and on applying £' M as a pertur­
bation in first order J has no meaning. According to the vector model (see 
Fig. 8.5) Land S precess independently about the direction of B with 
projections M Land Ms on the z-axis (i.e., the direction of B). There is 
degeneracy in M Land M s' but £' M commutes with L z and Sz, so 

!J.E = <yLSMLM sII1B B(Lz + gsSz) lyLSMLMs ) 

(8.20) 
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S.1. Zeeman effect in LS coupling 

Having lifted the degeneracy in M Land Ms we now apply the spin-orbit 
interaction C(yLS)L . S as a smaller perturbation. Notice that we are 
able, for once, to use non-degenerate perturbation theory in which we 
require, in first order, only the matrix element of C(yLS)L . S which is 
diagonal in the zeroth-order representation, even though the operator 
has non-vanishing off-diagonal elements in this representation. The 
diagonal matrix element is 

as in eq. (7.58) so in the lowest approximation the contribution to an 
energy shift of the Zeeman interaction and the spin-orbit interaction in a 
strong field is 

(8.22) 

B 

5 

L 

Fig. 8.5. Vector model showing Sand L precessing independently about the direction 
of B in a strong magnetic field. 

The electric dipole selection rules are 

I1Ms = 0; 11M L = 0 n polarization, 

= ± 1 (J polarization, (8.23) 

so the frequencies in a transition from one term to another in strong field 
are 

hv = hvo + fi.BBI1ML + g(yLS)MsML - C(y'L'S)MsM~}. (8.24) 

This strong-field limit of the Zeeman effect is called the Paschen-Back 
effect. When C can be neglected eq. (8.24) is identical to the normal Zeeman 
effect for there is no dependence on the spin-S and L are uncoupled and 
I1Ms = o. 

The energies of the states of a 2p term in strong field (eq. (8.22)) are 
illustrated on the right-hand side of Fig. 8.6. The states (M L = - 1, 
Ms = ~) and (M L = 1, Ms = -i) coincide if gs = 2 exactly. At the left 
of Fig. 8.6 are shown the weak-field Zeeman states whose energy shifts 
from the fine-structure levels are given by eq. (8.13). 
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ML,Ms 

2p.BB+{ 1. 1/2 
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2 

Fig. 8.6. The dependence of the Zeeman energy states of a 2p term on magnetic field. 
11£/( is plotted as a function of /loBI" At the right are shown the energies 11£ in strong 
field, on the assumption that g, = 2, together with the strong-field labels M v Ms· 

In the intermediate field region, where the Zeeman interaction and the 
spin-orbit interaction are of the same order of magnitude, one has to 
solve a secular equation to find the energies of the states. We shall not do 
this here but we shall make certain observations about the intermediate 
field region. Neither 1 nor M L> Ms are good quantum numbers because 
the combined Hamiltonian 

(8.25) 

does not commute with J2 nor with L z and Sz separately. But it does 
commute with lz = L z + S" so 

(8.26) 
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S.2. Quadratic Stark effect 

is a good quantum number at all fields. Therefore yt" does not have 
matrix elements off-diagonal in M. The matrix of yt" which has to be 
diagonalized breaks up into submatrices of given M, of which there are 
four in our example: M = ~, t -t -l 

If we pursue the low-field approximation to second-order perturbation 
theory in yt'M we find that the M states, which depend linearly on B in 
first order, begin to bend quadratically in B according to 

and 

(8.28) 

The result is a repulsion between states of the same M: the states CZP 3/2,1) 
and CZP 1/2' 1) bend away from each other. The generalization of this 
statement is that states with the same M neuer cross on an energy level 
diagram. This rule enables one to join up the low- and high-field states 
unambiguously, however complicated the diagram. Notice that the states 
M = ± ~ do not contribute to higher orders in perturbation theory 
because in eq. (8.27) the level 2pl/2 does not have IMI = l Therefore 
the energies of the M = ±~ states are exactly linear in B at all fields. 

We shall not discuss the Zeeman effect inj-j coupling: we merely note 
that, by taking the appropriate plojections, it is straightforward to 
evaluate 9j = gAl), s), j) ; 12 , S2, h; J) in weak fields for two electrons, 
starting from the Zeeman Hamiltonian of eq. (8.2). 'Weak' field in this 
context means that the Zeeman splitting is much smaller than that due to 
the residual electrostatic interaction (see problem 8.2). 

8.2. Quadratic Stark effect 

When an atom is placed in an external electric field E whose direction 
defines the z-axis there is an additional term in the Hamiltonian: 

.Yf£ = -L(-erJ' E 

= eEz L Zi 

(8.29) 

We consider first an atom in a state lyJ M J ) of well-defined parity, given by 

Then, as we have seen in eq. (3.80), the expectation value off( E vanishes, 

(8.30) 
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Interaction with static external fields 

because z is an odd function under a parity transformation. In other 
words a system of charges which has a centre of inversion symmetry 
cannot have a permanent electric dipole moment. 

However, an electric field can induce in an atom an electric dipole 
moment, proportional to E" and give rise to an energy of interaction 
proportional to E;. In second order perturbation theory the energy shift 
of the unperturbed state lyJ M J) is 

LlW = e2E; L I <yJMJ[ z [y'J'MJ)[2. 
y'J' WyJ - Wy'J' 

(8.31) 

(To avoid confusion in this section we have switched to the notation W 
for energy.) Equation (8.31) describes the quadratic Stark effect. The 
quantum numbers represented by y and y' must be such that the states 
[yJMJ) and 1y'J'MJ) have opposite parity, and the matrix element in 
eq. (8.31) is diagonal in M J because z commutes with Jz. 

Bearing in mind that, in the central-field approximation, the levels 
WY'J' and WyJ belong to different configurations because of the parity 
requirement, we see that the perturbation procedure is often justified 
because the numerator in eq. (8.3 I) is likely to be only about (eaoEJ2, 
which is of the order of (4 cm - 1)2 in a field of 107 Vm - I, whereas the 
energy denominator is large. 

To find the dependence of eq. (8.31) on M J we need to know the matrix 
elements of z, diagonal in M J • They are 

<yJMJ[ z ly'JMJ) = A(yy'J)Mjo (8.32) 

<yJMJ[ z [y'J - I M J) = B(yy'J)(J 2 - M;)1/2, (8.33) 

<yJMJI z ly'J + 1 M J) = C(yy'J)«J + 1)2 - M;)1/2. (8.34) 

The interaction connects the level J with a level J' = J or J ± 1 only. In 
LS coupling, for which Land S are also good quantum numbers, L' = L 
or L ± I; and S' = S since z commutes with S2. On substituting eqs. 
(8.32), (8.33), and (8.34) into eq. (8.31) we obtain three terms, each 
summed over all levels y' J' of parity opposite to that of yJ. The dependence 
on y, y', and J is complicated, but the entire Mrdependence is of the form 

LlW = R - TM; (8.35) 

where R = R(y, y', J) and T = T(y, y', J). Thus the degeneracy in M J 
is only partly lifted, for Ll W does not depend on the sign of M J : the electric 
field polarizes the charge distribution of the electrons independent of the 
sense of the precession about the z-axis. The coefficient of E; in eq. (8.31) 
is of course related to the polarizability of the atom in the state [yJMJ)' 

Let us now consider as an example the quadratic Stark effect in the 
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8.2. Quadratic Stark effect 

sodium O-linest (see Fig. 8.7). Unlike the Zeeman effect, the Stark effect 
gives an unsymmetrical displacement of the lines from the position of the 
unperturbed line. The ground state 2S1!2 (M] = ±!) is bound to be shifted 
downwards in second-order perturbation theory because of repulsion by 

I MJ -----r 
0·097 cm- 1 , 
',.---~,.... ±1/2 

I 
I 
I 
I 
I 
I 
I 
I 

0·049 cm- 1 I 

L 
_I/- __ J ___________ _ 
~t ---'--------..L..L-±1/2 
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Fig. 8.7. The quadratic Stark effect in the sodium 0 lines. The levels and the transitions 
in zero electric field are indicated by dashed lines. The displacements of the levels are 
shown for an electric field of 250 kV fcm. These data are taken from the paper by 

H. Kopfermann and W. Paul, Z. Phys. 120, 545, 1943. 

the states above it; and since the perturbing states of opposite parity lie a 
long way away, giving large energy denominators in eq. (8.31), one expects 
the Stark shift of the ground state to be small. The states of the 2p term are 
also shifted downwards by the 2S and 20 terms-actually more by the 20, 

t H. Kopfermann and W. Paul, Z. Phys. 120,545, 1943, from whose paper the data are 
taken. The experiment was done in absorption. 
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the nearest of which is 12,000 cm - 1 away, than by the 2S. The selection 
rules for M:J are the same as in the Zeeman effect. but because of the 
remaining degeneracy in M J the light emitted parallel to the electric field is 
unpolarized. 

The sodium D-lines provide a good example of a pure quadratic Stark 
effect: the various configurations are well separated from each other so 
the Stark shifts are very small, and second-order perturbation theory is 
adequate. As the energy denominator of eq. (8.31) becomes smaller the 
mixing of states of opposite parity becomes appreciable. An interesting 
consequence of this is that the selection rule !1! = ± I for electric dipole 
radiation is broken down and normally forbidden lines begin to appear 
with intensity proportional to E;'. 

For highly excited states the Stark effect becomes large and the pertur­
bation treatment breaks down. For large n the wave functions become 
hydrogenic, so the matrix element of z in eq. (8.31) is proportional to n 2 

and Wi'] - Wo ' x n- 3
• Thus the second-order expression for !1W 

would increase as n 7. As n increases the situation is reached in which the 
Stark splitting is larger than the energy separations between different 
configurations for a given n. This is equivalent to the approximation that 
all the configurations with different! (different parity) and the same n are 
effectively degenerate. Then the Stark effect becomes linear in Ez as we 
shall see in the next section. 

8.3. Linear Stark effect 

We have shown by a parity argument that for a state of definite parity 
there is no first-order Stark effect. But when states of opposite parity are 
degenerate or almost degenerate, which means that their energy separa­
tion is small compared with their Stark splitting, then the perturbation 
method breaks down; instead one has to solve a secular equation. 

Hydrogen is an example of such a degeneracy. Whereas the ground 
state Is 2S 1/2 has a definite parity and suffers a quadratic Stark shift 
downwards, all the states with n > 1 have some degeneracy in! according 
to the Dirac theory of the fine structure. This degeneracy is removed only 
when the very small Lamb shift is taken into consideration. We shall 
assume that the electric field is sufficiently large that the entire fine 
structure is less than the Stark splitting: thus we have to deal with the 
effectively degenerate group of states of a given n (> 1). (For very small 
fields, such that the Stark splitting is much less than the Lamb shift, 
states of opposite parity are not degenerate and one would expect a 
quadratic Stark effect. The actual situation would be complicated by 
hyperfine structure effects.) 

The simplest case is that with n = 2. We can ignore electron spin, and 
consider the wave functions IjJ nlm, of which there are four: IjJ 200, IjJ 211, 
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8.3. Linear Stark effect 

t/J210, t/J21-1' These four are degenerate eigenfunctions of the zeroth-order 
Hamiltonian 

(8.36) 

as in eq. (2.30). The perturbing Hamiltonian YfE = eEzz (eq. (8.29» 
commutes with lz' so all matrix elements of YfE vanish except for those 
with m 1 the same, i.e., m1 = 0; thus there are non-vanishing matrix ele­
ments of Yf E between the states t/J 200 and t/J 210' These two wave functions 
also satisfy the condition that they are to be of opposite parity. 

We find the perturbed energy levels in this degenerate situation by 
solving a secular equation for the 2 x 2 matrix with m1 = 0: 

The matrix elements are 

I
Yfaa - W Yfabl = o. 
Yfba Yfbb - W 

(8.37) 

(8.38) 

(8.39) 

(8.40) 

The result of eq. (8.39) can easily be verified by direct integration with the 
wave functions 

t/J200 = (32n)-1/2(ao)-3/2(2 - rlao) e- r/ 2ao , 

t/J210 = (32n)-1/2(ao)-3/2(rlao) e- r/2ao cos (), 

(see problem 8.4). Thus the secular equation (8.37) becomes 

with the solutions 

(8.41 ) 

(8.42) 

(8.43) 

(8.44) 

In a field of 107 Vm -1 the magnitude of these energy shifts is about 
12 cm - 1, which is large compared with the fine structure splitting, 
~ 0·35 cm -1, of the n = 2 level of hydrogen. Thus fairly modest fields 
satisfy the condition for a linear Stark effect, namely that the Stark split-
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ting is large compared with the energy separation between states of 
opposite parity. 

In the approximation that the Stark effect is linear the two states tf; 211 
and tf; 21 -1 are not shifted. The two states corresponding to the energy 
shifts W = ± 3eaoE z are linear combinations of the states tf; 200 and 
tf;210' Just as in the example of chapter 5 these combinations are found to 
be (see problem 8.5) 

(8.45) 

(8.46) 

The function tf; + corresponds to an electron charge distribution whose 
centre of charge is displaced by an amount 3ao along the positive z­
direction relative to the nucleus, and conversely for tf; _. It is in this sense 
that these states of the hydrogen atom, degenerate in I, have electric 
dipole moments, giving rise to a linear Stark effect. The states tf; + and 
tf; - are not associated with a definite orbital angular momentum about 
the nucleus. 

8.4. Relative intensities in the Zeeman effect 

In this section we want to discuss the relative intensities of the Zeeman 
components of a line in electric dipole radiation. We have already derived 
in chapter 3 the polarization rules for a hydrogen-like atom and we have 
stated the selection rules, eq. (8.16), for M] in the more general case ofa 
many-electron atom. One of the results of chapter 3 was eq. (3.56) in 
which the transition probability for electric dipole radiation was given 
for unpolarized light. But since we are now to be concerned with the 
direction of polarization we must refrain from averaging over all direc­
tions of polarization and go back to an earlier equation such as eq. (3.43) 
in which we see that for electric dipole radiation we need the matrix 
element squared 

1<'/1 e . r Ii) 12 

where e defines the direction of polarization. For a transverse wave, e is 
perpendicular to the direction of propagation of the wave, k: 

e· k = O. (8.47) 

We shall discuss the electric-dipole transition from the upper state 
lyJM]) to the lower state ly'1'M~) in the presence ofa magnetic field B 
which defines the axis of quantization. We assume that we have a Zeeman 
effect linear in B, that is, in zeroth order J and l' are good quantum 
numbers. But we make no assumption about the sets of quantum numbers 
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8.4. Relative intensities in the Zeeman effect 

y and y' other than that they describe states of opposite parity. Thus our 
results will have wide generality, following from the properties of the 
angular momentum J and its projection M J . Before we discuss the 
quantities l<y'J'M~1 C . r lyJMJ)l z which determine the relative intensi­
ties of the Zeeman components let us clarify the geometrical features of 
the problem. 

B 

Fig. 8.8. The orthogonal set of vectors k, ~1' and ~2 with k and e, lying in the x-z plane. 

Let the direction of B be chosen as the z-axis of a Cartesian co-ordinate 
system labelled by unit vectors X, y, and z (see Fig. 8.8), and let the wave­
vector k make an angle 0 with the z-axis. Since we have cylindrical sym­
metry about the z-axis we impose no loss of generality if we take k to lie in 
the x-z plane. Further, let c be decomposed into c1 and c2 : 

(8.48) 

where c1, e2 , and k form an orthogonal set of axes with c1 lying in the 
x-z plane. The coefficients G 1 and G z satisfy a normalization condition 

(8.49) 

and in general they contain the phases necessary to describe elliptically 
polarized radiation. We can also express C in terms of its components 
along the X, y, z directions: 

e = G 1 cos 0 X + Gzy - G 1 sin 0 z. (8.50) 

Since r = xx + yy + zz we could proceed to find the relative intensities 
of the Zeeman components in terms of the matrix elements of x, y, and z, 
but we prefer not to, because the matrix elements are more conveniently 
written in terms of the so-called spherical tensor components of r: 

ro = z, 

r_1 = (2)-1/2(X - iy), 

r+1 = _(2)-1/2(X + iy). 

(8.51 ) 
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In spherical tensor notation the definition of the unit vectors cq(q = 0, 
± I) is such that the vector r = Lq (-I)qri-q. Thus with the definitions 
Co = z, L 1 = (2) - lf2(X - iy), c+ 1 = - (2) - lf2(X + iy), we have 

r = r oCo - r _ 1 C + 1 - r + 1 C - 1 

= roz + r_ l(2)-l2(x + iy) - r+ l (2)-l/2(x - iY). (8.52) 

The non-vanishing matrix elements squared of these components of r 
are written out in table 8.1. We see that the only non-vanishing matrix 
elements of this vector operator are those for which J' = J or J ± 1. The 
quantities A, B, and C are functions of y, '/, J and of a radial integral. In 
dealing with the relative intensities of the Zeeman components of a line 
for which I'1J is fixed, we are not concerned with the magnitudes of these 
quantities. On the other hand the entire Mrdependence is contained in 
the coefficients of A, B, and C. We note that r + land r _ 1 share the property 
of the raising and lowering operators in angular momentum theory in that 
they connect only those states for which M; = M j ± I respectively. 
Thus the selection rules for M j are implicit in the matrix elements. Since 
the Zeeman components for I'1Mj = 0, ± 1 are separated in frequency 
according to eq. (8.18) or, as a special case, eq. (8.17), we can associate 
each matrix element with a particular Zeeman component. This situation 
would not have been so obvious had we chosen to work with the matrix 
elements of x, y, and z. 

ForJ' = J: 

Table 8.1. Matrix elements squared of the components of r 

I</JM;lzlyJM])1 2 = M/A 
1(y'JM] + Ilr+dyJM])1 2 = t(J - M])(J + M] + I)A 

I(y'JM] - Ilr _ dyJM])1 2 = t(J + M])(J - M] + I)A 

L I(y'JM~lrll'JM])12 = J(J + I)A 
\Ij 

For J' = J + I: 

1(;' J + I M]lzlyJM])1 2 = {(J + 1)2 - M/}B 

1(1" J + I M] + Ilr + dyJM])1 2 = t(J + M] + I)(J + M] + 2)B 
I<Y' J + 1M] - Ilr _,lyJM])1 2 = t(J - M] + I)(J - M] + 2)B 

L 1(/ J + I M~lrll'JM])12 = (J + 1)(2J + 3)B 
'\'1, 

For J' = J - I: 
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1</ J - I M]lzlyJM])1 2 = {J2 - M]}C 

1</ J - I M] + Ilr + rlyJM])1 2 = t(J - M])(J - M] - I)C 

1(/ J - I M] - Ilr _ rlyJM])1 2 = t(1 + M])(J + M] - I)C 

L 1(/ J - I M~lrlyJM])12 = J(2J - I)C 
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8.4. Relative intensities in the Zeeman effect 

We can now write out an expression for l<y'J'M;1 e . r li'JM] )1 2 by 
combining the geometrical part of this problem, eq. (8.50), with what we 
might call the spectroscopic part, i.e., the matrix elements of table 8.1, via 
eq. (8.52). We find (see problem 8.7) 

l<y'J'M;1 e . r lyJM]) 12 = la l 12 sinz 8 l<y'J'M;1 z lyJM])I Z 

+ Hlall z cosz 8 + lazl z - i(ala! - araz) cos O} 
I < v' J' M; I r _ 1 lyJ M] ) 12 

+ Hlall Z 
COs

Z 0 + lazl Z + i(ala! - araz) cos O} 

l<y'J'M;lr+llyJM])l z (8.53) 

in which, for a given M]. only one of the matrix elements on the right-hand 
side ref!1ains as soon as M; is given an allowed value. In this expression we 
have before us a description of the relative intensity in electric dipole 
radiation for a direction of observation given by 0, for a state of polariza­
tion given by lall, lazi and their phase difference, and for a Zeeman com­
ponent lyJM])---> 1y'J'M;). In special cases eq. (8.53) can be greatly 
simplified: we shall consider only transverse (8 = 10/2) and longitudinal 
(0 = 0) observation. 

In transverse observation we have 

l<l''J'M;1 e . r lyJM])I~ = lallzl<y'J'M;1 z lyJM])1 2 

+ ilazlzl<y'J'M;1 r -1 lyJM])I Z 

+ ilazlzl<y'J'M;1 r + 1 lyJM])I Z 

transverse (8.54) 

and in longitudinal observation 

I <y'J'M;1 e . r lyJM])l z 

= t{ I - i(ala! - aiaz)] l<y'J'M;1 r -I lyJM])1 2 

+ -H I + i(a 1 a! - aia2 )] I <y'J'M; I r + 1 lyJM])1 2 

longitudinal (8.55) 

In eq. (8.55) the normalization condition (8.49) has been used. These two 
formulae (8.54) and (8.55) can be applied at once to any particular example 
(see problem 8.8). 

Let us discuss these two cases in further detail. In transverse observation 
the polarization condition a2 = 0, a l = 1, which corresponds to the 
electric vector parallel to the z-axis (10 polarization), is associated with the 
selection rule AM] = 0; and the condition al = 0, az = I, which cor­
responds to the electric vector in the x-y plane, is associated with the 
selection rule AM] = ± 1. Thus we see that the (geometrical) polariza­
tion rules are explicitly connected with the (spectroscopic) selection rules. 
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The relative intensities are: 

n 

6 

t1.MJ = 0 

t1.MJ =-1 

t1.MJ = + I 

I <y'J'MJI zlyJMJ )1 2
, 

tl<y'J'MJ - II r_IlyJMJ)12, 

tl<y'J'MJ + II r+ 1 IyJMJ)1 2. 

(8.56) 

Notice that for t1.MJ = ± I there is a factor t in the geometrical part and, 
from table 8.1, another factor t in the matrix element squared. In longi­
tudinal observation one can distinguish between the transitions t1.MJ = 
+ I and t1.MJ = -1 as regards their polarization as follows: let Q 1 = a 
and Q 2 = (1 - ( 2

)1/2 eib where 6 is a phase difference. Then 

(8.57) 

and the geometrical factors in eq. (8.55) becomet(l =+= 2a(l - ( 2
)1/2 sin 6). 

With a = (2)-1/2, the contributions of r -I and r + 1 vanish respectively 
when 6 = nl2 or - n12. In these two cases each non-vanishing component 
is identified with circularly polarized radiation of opposite sense (6 _ and 
6 +): 

6 = n12: I <y'J'M; I e . r lyJMJ)1 2 

= t,,_ = I<Y'J'MJ - 11 r_ 1 lyJMJ)1 2
; 

6 = -nI2: I <y'J'M; I e . r lyJMJ)1 2 

= 1;+ = 1<y'J'MJ + 11 r+ 1 lyJMJ)1 2. (8.58) 

(We have used the notation II to denote relative intensities in longitudinal 
observation.) In contrast with eq. (8.56) there is no factor t in the geo­
metrical part of eq. (8.58). 

Let us now discuss certain sum rules. We have written out in table 8.1 
the result for a given line, i.e., yJ, y'J' fixed: 

L I <y'J'M;I.r lyJMJ)1 2 is independent of M J. 
MJ 

The notation here is 

1<11 rli)12 = 1<11 zli)12 + 1<11 r+ li)12 + 1<1lr_li)12. 

(8.59) 

Equation (8.59) is the important result already quoted in chapter 3, eq. 
(3.59). It states that the rate of decay, and hence the lifetime, of each 
Mrstate belonging to a level yJ is the same. We assume, of course, that 
the frequencies of the Zeeman components are so nearly equal that the 
w 3 dependence of the transition rate is the same for all. This assumption 
we take to be implicit in the use of first-order perturbation theory. 

Another result, which can be verified from table 8.1, is that in transverse 
observation 

(8.60) 
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where 

(8.61) 

and 

We have used here the notation Jl to denote relative intensities in trans­
verse observation. Equation (8.60) states the requirement that in the limit 
of zero fi~ld (or in the limit that the Zeeman components are unresolved 
spectroscopically) the radiation is unpolarized. Indeed, one must expect 
that an analogous result is true for any angle of observation O. From 
eq. (8.53) one can verify (see problem 8.9) that 

I, az = 0) = L L I~, (8.63) 
MJ M.i 

and 

(8.64) 

both independent of O. With eq. (8.60) these equations lead in the limit to 
unpolarized radiation for any angle O. In longitudinal observation we 
have 

(8.65) 

The fundamental eq. (8.59) can be re-written in terms of the relative 
intensities in transverse observation, I~ and I!. With eqs. (8.61) and (8.62), 
eq. (8.59) becomes 

L {I~ + 2I!} is independent of M J . 

Mj 

Equations (8.60) and (8.65) combined read: 

L L I~ = L L I! = L L I~+ = L L I~_. 

(8.66) 

(8.67) 

These two sum rules, eqs. (8.66) and (8.67), together with the assumption 
that the Zeeman intensity pattern is symmetrical, are sufficient to give the 
relative intensities of Zeeman components. Indeed, they were used 
originallyt with the correspondence principle to derive the formulae of 
table 8.1. The use of the sum rules is neat and convenient for finding 
relative intensities in transitions involving small values of J (see problem 
8.10), but for larger J it is much more straightforward to evaluate the 
matrix elements. 

It is helpful to bear in mind the properties of a radiating classical dipole 
in this discussion of relative intensities, for otherwise the various factors 

t H. Honl, Z. Phys. 31.340,1925. 
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of 1, which we have pointed out as they appeared, might be confusing. 
For example, in eq. (8.66) we have to give double weight to I~ relative to 
I~. Now we have formulated the problem as if we had a classical dipole 
with a n-component oscillating in the z-direction and two a-components 
rotating in opposite senses in the x-y plane. One of these rotating com­
ponents can be resolved into two oscillating components, each of relative 
amplitude (2) - 1/2, one in the x-direction and one in the y-direction. If, as 
we have assumed, the x-direction is the direction of transverse observation 
only the y-oscillator contributes to the observed I~, with relative intensityl 
But it is important to realize that eq. (8.66) refers to what is emitted, not 
merely to what is observed in the x-direction. Therefore, since LM} I~ 
represents only half what is emitted with a-polarization we must restore 
full weight with a factor 2. Similar considerations relate the absence of a 
factor! in eq. (8.58) to its presence in eq. (8.62). 

Finally, the generality of the theory of angular momentum allows us to 
apply the formulae of table 8.1 to many circumstances. The representation 
lyJMJ ) may describe the Zeeman states of a fine-structure level under any 
coupling scheme provided the field is weak. We could equally well discuss 
the case when Land S are completely decoupled by writing the state as 
lyLM L)' We have incorporated Sin y because in electric dipole radiation 
AS = 0, AMs = 0, and formally we replace J, M J by L, M L in the for­
mulae. In particular, the sum rules show at once that for singlet spectra 
(S = 0) in transverse observation the n-component is twice as strong as 
each a component. The formulae of table 8.1 also apply to one-electron 
states I/m l ), though of course parity considerations forbid the transition 
I ----> I. 

Problems 

(Those problems marked with an asterisk are more advanced.) 

8.1. Estimate the magnitude of a 'strong' field in the Zeeman effect of 
the n = 2 fine structure levels in hydrogen. 
8.2. Evaluate the grfactors for the levels of the 5p6s configuration inj-j 
coupling. There is a g-sum rule which states that for a given configuration 
the sum of the g-values of all levels with the same J is independent of the 
coupling scheme. Confirm this rule for the 5p6s configuration in LS and 
j-j coupling. 
*8.3. What is the form of the vector potential A which represents a 
uniform magnetic field B = Bk (in the z-direction), where B = curl A 
and div A = O? 

For such a field show that replacement of the operator p2/2m by 
(1/2m)(p + eA)2 in the Hamiltonian for a one-electron atom leads to a 
description of (a) the Zeeman effect for orbital motion and (b) diamag­
netism. [The electron charge is - e.] 
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Problems 

8.4. Use the Schrodinger hydrogenic functions t/Jnlml to show that for 
n = 2 in hydrogen 

f t/Jioo eEzzt/J210 dr = -3eaoEz, 

which is eq. (8.39). Thus the Stark operator, eEzz, has off-diagonal 
matrix elements in the nlml representation between degenerate states of 
opposite parity. 
*8.5. For n = 2, m1 = 0 in hydrogen there are two functions, t/J + and 
t/J -, which diagonalize the Stark operator eEzz. Find these functions as 
linear combinations of t/J 200 and t/J 210, where t/J ± correspond to the Stark 
energy shifts W = ± 3eaoEz respectively: see eqs. (8.45) and (8.46). In 
the absence of an electric field t/J + and t/J _ are still orthogonal solutions of 
Schrodinger's equation of definite energy, but they are not associated with 
definite orbital angular momentum. 

Sketch graphs of t/J + and t/J _ as a function of z. Hence show qualitatively 
that hydrogen in the state t/J + can be said to have a negative electric dipole 
moment induced by an applied electric field, but one which leads to an 
energy shift linear in electric field. 
8.6. For hydrogen in an electric field the effective potential energy is 

V = -e2j4TCeor + eEzz. 

Sketch V as a function of z and discuss the effects of tunnelling through a 
potential barrier. (See H. Kuhn, Atomic Spectra, pp.109 ff.) 
*8.7. Verify eq. (8.53). Remember that r + and r _ are not Hermitian 
operators and that < il r _ Ij)* = GI r"!.. I i) and that the Hermitian 
adjoint of r _, written r"!.., is r"!.. = -r +. 

8.8. Use eqs. (8.54) and (8.55), or more particularly eqs. (8.56) and (8.58), 
together with table 8.1 to evaluate the relative intensities of the Zeeman 
components of the sodium D lines in transverse and in longitudinal 
observation. 
8.9. Verify eqs. (8.63) and (8.64). 
8.10. Use the sum rules, eqs. (8.66) and (8.67), to evaluate the relative 
intensities of the Zeeman components of the sodium D lines in transverse 
and in longitudinal observation. 
8.11. Derive classically expressions for the frequencies of a Lorentz 
triplet in the normal Zeeman effect. To do this, consider the modification, 
brought about by the application of a magnetic field, in the motion of a 
system of three-dimensional harmonic oscillators. Notice that (a) the 
charge to mass ratio of an oscillator must be that of an electron if the 
result is to agree with experiment; and (b) the mechanical frequency of the 
oscillator, which is equated to the frequency of electric dipole radiation, is 
involved in the calculation-the derivation by Lorentz in 1897 predated 
the concept of quantized energy levels in atoms. 
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9. Hyperfine structure and 
isotope shift 

So far we have considered the nucleus only as a massive point charge, 
responsible for the large electrostatic interaction with the charged electrons 
which surround it and for the smaller electrodynamic interaction with the 
spinning electrons moving through the electric field of the nuclear charge 
(i.e., spin-orbit interaction). 

There is a further splitting of energy levels, called hyperfine structure, 
which is extremely small. The range of splittings is of the order of 10- 3_ 

I cm - 1, or 30-30,000 Mc/s. The lower end of this range is at the limit of 
resolution of optical spectroscopic methods in which the line-width is 
governed predominantly by Doppler broadening, but it lies conveniently 
within the scope of modern radiofrequency methods of spectroscopy. The 
technical problem of measuring optically the difference in frequency 
between two electric dipole transitions at, say 20,000 cm - 1 when the 
frequency difference, 10- 3_1 cm - 1, is of the order of the line width is 
certainly a formidable one. On the other hand the direct observation of 
magnetic dipole transitions between hyperfine structure levels is what is 
achieved in radiofrequency spectroscopy: the precision is limited by the 
natural line-width, which can be made very small for ground states of free 
atoms. 

We explain hyperfine structure in terms of properties of the nucleus 
other than its charge. In 1924 Pauli suggested that a nucleus has a total 
angular momentum, which is labelled by the quantum number I. This 
quantum number may have integral or half-integral values, like the total 
electronic angular momentum quantum number J, for a nucleus is a 
compound structure of nucleons-protons and neutrons-each of which 
has an intrinsic spin t and may take part in orbital motion within the 
nucleus. We shall consider the total nuclear angular momentum quantum 
number I, or 'nuclear spin', as fixed for a given isotope because we shall 
only treat one energy state of the nucleus, namely the ground state. We 
attribute to a nucleus, in addition to its spin, electromagnetic multipole 
moments of higher order than electric monopole. The interaction between 
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these moments and the electromagnetic field produced at the nucleus by 
the electrons is responsible for hyperfine structure. 

By symmetry arguments of parity and time-reversal the only multipole 
(2k-pole) moments which do not vanish are: the magnetic moments for 
odd k, and the electric moments for even k, i.e. (apart from electric 
charge, k = 0), magnetic dipole (k = I), electric quadrupole (k = 2), 
magnetic octupole (k = 3), electric hexadecapole (k = 4), etc. The approxi­
mate spherical symmetry of an atomic system makes this multipole 
expansion a convenient one: the angular part of such an expansion is 
expressed in terms of spherical harmonics of order k. Interaction of the 
higher order multi pole moments (k ~ 3) with the electrons is interesting 
but often negligibly small: in fact only a few electric hexadecapole 
interacti~ns have been observed. We shall confine ourselves to the two 
lowest orders of interaction: that of a nuclear magnetic dipole moment 
with an electronic magnetic field, and that of a nuclear electric quadrupole 
moment with an electronic gradient of electric field. These two interactions 
tum out to be of the same order of magnitude for non-s electrons, as we 
shall see, and they are about \08 times larger than the octupole and 
hexadecapole interactions. 

9.1. Magnetic dipole interaction 

We consider first the interaction of a point nuclear magnetic moment Jil 
with the magnetic field Bel produced by the electrons at the nucleus. We 
write a Hamiltonian 

(9.1) 

which is to be treated as a small perturbation. The assumption in eq. (9.1) 
is that Jil depends on nuclear co-ordinates only and that Bel depends on 
electronic co-ordinates only. The dot product between the nuclear vector 
Jil and the electronic vector Bel is of course characteristic of a dipole term 
in a multipole expansion. As an approximation we shall assume through­
out this chapter that the zeroth order Hamiltonian contains the central 
field, the electrostatic repulsion terms between electrons, and the spin­
orbit interaction, so that we have to deal with separate electronic energy 
levels labelled by J. That is to say we assume that we are dealing with an 
isolated level J, or in particular that the hyperfine structure is small com­
pared with the fine structure. We shall not consider the interesting excep­
tions to this case which occur particularly in heavy elements. Thus we can 
call our approximation the IJ coupling approximation (in analogy with 
LS coupling): I and J are good quantum numbers, and we confine our­
selves to considering matrix elements of the perturbation, eq. (9.1), which 
are diagonal in I and J. 

An immediate consequence of the IJ coupling approximation is that 
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we can write the vector operator Jll as proportional to I: 

Jll . I 
III = 1(1+-1) I, (9.2) 

just as in eq. (8.10) for JlJ. Through this equation we may define an 
effective g-factor for the nucleus: 

(9.3) 

According to the convention which we are adopting this equation differs 
in sign from the analogous eq. (8.11) for gJ. gl is positive if Jll lies along I. 
Also the unit PN for nuclear magnetic moments is the nuclear magneton 

eh rno PH 
PN = 2M = MPH = 1,836·13 (9.4) 

where M is the proton mass. Thus in these units gI is a number of the 
order of unity. Sometimes eq. (9.3) is written 

(9.3a) 

in units of Bohr magnetons in which case g; is a very small number. It is 
perhaps less confusing to avoid the use of gI altogether and to write 
simply 

(9.3b) 

where PI is the value of the nuclear moment, quoted usually in nuclear 
magnetons. 

It also follows immediately from the adoption of the IJ coupling 
approximation that we can write Bel X J since we have already assumed 
that the vector operator Bel operates in the space of the electronic co­
ordinate only. Thus eq. (9. I) is of the form 

,l'f = AI . J (9.5) 

where A is a parameter to be determined from experiment. We shall 
return to this equation later, but first we shall discuss the detailed form 
of Bel for a single-electron atom. 

We consider a single-electron atom for which I oF O. Then semi­
classically the magnetic field at the nucleus consists of two parts: that due 
to the orbital motion of the electron of charge - e, co-ordinate r, about the 
nucleus as origin, and that due to the spin magnetism of the electron at a 
distance r from the nucleus: 

B = Po (-ev) x (-r) _ Po ~[ _ 3(Jl,' r)rl -J- 0 (96) 
cI 4 3 4 3 Jl., 2' r -r, . 

IT r IT r r 

where - r is the co-ordinate of the nucleus with respect to the electron. 
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With JIs = - 211BS (with gs = 2 exactly) and - er x v = - 211Bl, 

Bel = -2 110 I1B [I _ S + 3(s . r)r] , 
4n r3 r2 I i= 0, 

and the perturbing Hamiltonian of eq. (9.1) is 

ft = (~:) ( 211B /~ ) I ~3N, 
where 

N = 1 - s + 3(s . r)r/r2. 

(9.7) 

(9.8) 

(9.9) 

The first-order energy shift arising from this perturbation is the expecta­
tion value of Yf. The zeroth-order wave functions, separable in nuclear 
and electronic co-ordinates, are ly/MJm) which are (2/ + 1)(2) + 1)­
fold degenerate in MI and mj' As usual for degenerate perturbation theory 
we form new zeroth-order functions lyIjFMF ) which are linear combina­
tions of the functions ly/MJm) where 

F = I + j. (9.10) 

The quantum number F describes the total angular momentum of the 
atom. F remains a good quantum number under the application of the 
perturbation Yf, for the hyperfine interaction does not give a torque on 
the atom as a whole. Therefore 

(9.11 ) 

To evaluate t1.E we project N on to j since we are taking matrix elements 
diagonal in), and Yf becomes effectively 

ff - (110) (2 Ill) N· j I· j 
- 4n I1B I j(j + I) 7' (9.12) 

Then 

t1.E = (~:) (2/tB I~) (jU:' /)r 3)t{F(F + I) - jU + I) - l(! + 1)1 

(9.13) 

a· 
= -1 {F(F + 1) - )(j + 1) - /(J + I)} (9.14) 

where 

(9. I 5) 

The angular form of eq. (9.14) is quite analogous to that of eq. (7.52) for 
fine structure, and we shaH discuss it shortly. Meanwhile let us investigate 
aj which fixes the magnitude of the hyperfine structure splitting. 

171 



Hyperfine structure and isotope shift 

From eq. (9.9.) N . j, which is the same as N . (l + s), is 

N . j = (I - s + 3(s . r)r/r2) . (I + s) 

= 12 - S2 + 3(s . r) (r . 1)/r2 + 3(s . r)(r . s)/r2. (9.16) 

Now r . I = 0 since hI = r x p, so the third term in eq. (9.16) vanishes. 
Also 

(9.17) 

which can be shown by writing out components and making use of the 
commutation relations for spin, or alternatively by invoking the relation 
(see problem 4.2(c» 

(s . F)(s . G) = iF . G + i(i/h)s . (F x G) (9.18) 

where F and G are any two vector operators which commute with s (here 
we put F = rand G = r). Finally, therefore, eq. (9.16) becomes 

N . j = 12 (9.19) 

and 

a - (110) (2 Ill) l/r 3 1(1 + 1), 1 0 
j - 4n I1B I < ) j(j + I) i=. (9.20) 

To complete the picture we must consider the interaCtion between the 
nuclear magnetic dipole moment and an s-electron (/ = 0) for which it 
turns out, though this is not immediately obvious, that aj of eq. (9.20) 
vanishes. There is an interaction between the nuclear moment and the 
intrinsic spin magnetic moment of an s-electron which depends upon the 
fact that an s-electron has a non-zero probability density at the origin 
11/1(0)12. This is called the Fermi contact interaction, and it has the form 

Yf' = asI . s 

= asI . j (9.21) 

since j = s for I = 0, where 

(9.22) 

One might think that a full relativistic treatment is necessary for the 
derivation of this formula. However, a demonstration, if not a rigorous 
derivation, of the right answer is given by the following semi-classical 
considerations: for an s-electron there is a spherically symmetrical dis­
tribution of spin magnetism which does not vanish at the origin. The 
magnetization, or spin magnetic moment per unit volume, at the origin is 

(9.23) 
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Since the magnetic field at the origin arising from a spherical shell of 
uniform magnetization vanishes, the resulting field is the same as that due 
to a sphere of uniform magnetization Po, 

(9.24) 

independent of the radial variation of t/t 2(r) provided there is spherical 
symmetry (see problem 9.1). The magnetic interaction of a point nuclear 
magnetic moment with this field is 

(9.25) 

which gives the expression (9.22) for u,. It is interesting to regard this 
demonstration as a confirmation that B = (2110/3)P 0 and not H = 
- (1 /3)P 0 is to be used in describing this atomic phenomenon, for other­
wise there would be disagreement with experiment. In other words. B. 
which is associated classically with solenoidal fields arising from cir­
culating currents, is appropriate here. 

For hydrogen we can evaluate as and a j • For 1= 0 

hence 

For 1# 0 

hence 

Z3 

1t/t(0)1 2 = ~3-3' 
1won 

(
110) ( Ill) 8 Z 3 

a, = 4n 211B I .3 uiin3 ' I = O. 

(9.26) 

(9.27) 

(9.28) 

(9.29) 

(It turns out that aj gives as for I = 0, j = 1 but this is another result 
special to hydrogen.) 

The hyperfine structure of the Is 2S 1/2 ground level of hydrogen is 
interesting because it is calculable and has been measured to high precision 
by the method of magnetic resonance in an atomic beam. The nuclear 
spin (proton spin) is I = 1. Therefore from eq. (9.14) the ground level 
splits into two levels F = 1 and F = 0 separated by an energy interval 
h!!v = as. Substitution of the proton magnetic moment III = 2·79275 n.m. 
(nuclear magnetons) in eq. (9.27) for as, together with a reduced mass 
correction, leads to a value of!!v differing by about 1 part in 1,000, much 
larger than experimental error, from the experimental result. There are 
other more refined corrections to be made, but historically the most 
important is the introduction by Breit of the anomalous magnetic moment 
of the electron. His suggestion that gs # 2 stimulated work on quantum 
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electrodynamics to give the result 

(
a (

2
) gs = 2 I + - - 0·328 - ... 

2n n2 

= 2 x 1·0011596. (9.30) 

This correction in particular greatly improves the agreement with the 
experimental resultt which, with the development of the hydrogen maser, 
has surpassed all other frequency measurements in precision: 

~v (H) = 1.420,405,751'7662 ± 0·0030 Hz 

referred to the frequency standard of a caesium atomic beam clock 

~v (Cs) = 9,192,631, 770 Hz. 

Before we consider the hyperfine structure for other simple configura­
tions let us write down the form of the magnetic dipole interaction for 
many electrons. In the non-relativistic approximation we can write, 
summing the Bel of eqs. (9.7) and (9.24) over all electrons, 

.j{ = ('10) (2PB 
Ilf) I . L {l __ ~ (Si _ 3(Si~) 

4n I i r; r; r; 

+ (8n/3)ll/ti(0)1 2s} (9.31) 

where, because of the spherical symmetry of the closed shells, we need 
only consider a summation over valence electrons. In the absence of con­
figuration mixing and relativistic effects (which are very important in 
hyperfine structure, but which we shall not be able to discuss) the first two 
terms in eq. (9.31), the orbital and spin-dipole terms, apply for electrons 
with I # 0, and the third term, the contact term, applies for electrons with 
I = O. In any case, for a level with well-defined total electronic angular 
momentum J, eq. (9.31) can be written 

= A(J)I . J (9.32) 

in which the single parameter A (J) is proportional to Pf / I and to Be" the 
magnitude of the magnetic field at the nucleus produced by the electrons. 

9.2. Determination of nuclear spin from 
magnetic hyperfine structure 

To first order the energy shift of a level J is given by the expectation value 
of the Hamiltonian of eq. (9.32): 

~E = < yIJFMF I A(J)I . J lyIJFMF) 

= !A(J){F(F + I) - J(J + I) - l(l + I)}, (9.33) 
t L. Essen. R. W. Donaldson. E. G. Hope. and M. J. Bangham. Melr%qia.9. 128. 

1973. See also S. B. Crampton. D. Kleppner. and N. F. Ramsey. Ph),s. Rez'. Letters 11. 338. 
1963. Earlier work had been conducted by P. Kusch: see Phrs. ReI'. 100. 1188. 1955. 
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9.2. Determination of nuclear spin 

which reduces to eq. (9.14) for a single electron. As already remarked, the 
analogy with spin-orbit interaction giving rise to fine structure is exact 
with the replacements 

J----> F 

L---->J 

S---->I 

(czs+ 1 L) ----> A(J). 

(a) There is a splitting into hyperfine structure levels, labelled by F, 
which are (2F + I)-fold degenerate; 

(b) A (J) is a measure of the splitting and there is an interval rule: 

AE(F) - AE(F - 1) = A(J)F; (9.34) 

(c) there is a sum rule for relative intensities; 
(d) Fhas 21 + I values for 1 < J or 2J + I values for J :( I; 
(e) the electric dipole selection rule for Fis AF = 0, ± I, F = 0 -;. F = O. 

Let us consider, as an example of the measurement of nuclear spin from 
optical hyperfine structure, the work of Andersont on 139La. He studied 

~~~ ~~ ~ ~ 
F 
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Fig. 9.1. The hyperfine structure splitting of the transition 5d26s 4F912-5d26p 4G lll2 

with the structure of the 4G 1112 level unresolved. 

to. E. Anderson, Phys. Rev. 45, 685, 1934. 
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the hyperfine splitting of the line 5d26s 4F9/2-5d26p 4G 11 / 2 at 6,250 A 
with a Fabry-Perot interferometer, and deduced that Ie 39La) = 1. The 
interpretation of the spectrum is made simpler if one can find a transition 
in which one of the levels has a large hyperfine structure and the other 
has negligible structure. The magnetic dipole interaction is largest for 
configurations with an unpaired s-electron which gives rise to a contact 
interaction (see problem 9.2 for a confirmation of this in the formulae for 
hydrogen). Thus, neglecting the contribution of the 5d 2 electrons we 
assume that the 5d 26s configuration has a reasonably large structure and 
the 5d 26p has only a very small (unresolved) structure. The structure of 
the spectral line therefore reflects the structure of the level which is split 
(see Fig. 9.1). The nuclear spin I can be found by counting the number of 
components of the line if J > I, for then the number of components is 
simply 21 + 1. Thus the transition under consideration is very suitable 
for determining I because J = t which is reasonably large, so that if there 
are less than 2J + 1 = 10 components, I is less than J. Anderson was 
able to count at least seven resolved components, but the eighth com­
ponent in the high-frequency tail of the pattern was unresolved so the 
counting method gave only I > ~ definitely. 

Anderson also studied the relative intensities of the components, which 
should be proportional to the statistical weights, 2F + 1, of the final 
levels. He had difficulty in measuring the relative intensities accurately 
enough to establish that I = ~ rather than I = t (see problem 9.3). The 
difficulty in achieving sufficient accuracy in intensity measurements is not 
untypical of optical spectroscopic work, and intensity measurements 
should not be relied upon when other methods are available. 

Finally Anderson investigated the hyperfine structure intervals. From 
the interval rule, eq. (9.34), the relative intervals are proportional to 
F = 1+ J, 1+ J - 1, ... , IJ - II + 1, so if J is known the intervals 
lead to a determination of I. With the largest interval set equal to 100 
arbitrary units, the six resolved relative intervals were 100, 86·8 ± 1 ·3, 
74·4 ± lA, 61·2 ± 1·7,51·7 ± 1·8,38·5 ± 2·1. These intervals are con­
sistent only with a value I = ~ (see problem 9.3). This experiment illus­
trates three ways of determining a nuclear spin from optical measure­
ments. 

Notice that the sign of A(4F9/2) can be established immediately from 
the hyperfine structure pattern provided the split level 4F 9/2 is known to 
lie below the unsplit level 4G 11 / 2 in energy. The hyperfine structure of the 
level 4F 9/2 is normal (not inverted) and A (4F 9/2) is therefore positive. The 
value of A(4F9/2) is in fact about 0·014 cm -1, the largest interval is 
0·111 cm - 1, and the whole structure spreads over about 0·500 cm - 1. 

These numbers are typical for hyperfine structures in moderately heavy 
elements. 
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9.3. Determination of J11 from magnetic hyperfine structure 

In general the magnetic dipole interaction constant A( J) is proportional 
to Ill/land Bel' so to find III (with I known) one has to calculate Bel which 
is related to l/r3 for each electron. A direct calculation of (I/r3

) with 
radial wave functions is not at all reliable-one cannot trust the wave 
functions to give answers to better than ± 25 per cent except in some 
modern work on special cases. Some of the most accurate values of nuclear 
moments have been obtained directly by nuclear magnetic resonance, 
independent of electronic behaviour to a first approximation, and indeed 
some recent work on hyperfine structure has used these accurate values of 
11 I to evaluate the electronic parameter (I /r 3

) and hence to throw light 
on the accuracy of radial calculations. 

In discussing the determination of IldI from A(J) we shall confine our­
selves to the alkali atoms. Goudsmit and Fermi and Segre have modified 
the hydro genic formulae for aj and as to take account of the screened 
central field in alkalis. For I #- 0, aj of eq. (9.20) contains the parameter 
(I/r3

). The fine-structure doublet separation ~W, which contains 
(1/,. . dV/dr) can be expressed in the form (eq. 7.74)) 

~W = (~:) 2P~Zi< l/r3
)(1 + -!-) (9.35) 

where Zie is the effective charge introduced by Lande, and provided this 
fine structure parameter (I/r3

) can be regarded as the same as the hyper­
fine structure parameter, we have from eq. (9.20) 

(PI) l(l+l) ~w 
a j = PBI j(j + l)(l + -!-) Zi' 1#-0. 

In terms of Lande's formula (7.75) for ~ W, we have 

For s-electrons similarly we use a modified I tfJ(O)1 2 
: 

with which eq. (9.22) gives 

or in different units 

ZZ2 
ItfJ(0)1 2 = ~ 

na6n 3 

(9.36) 

(9.37) 

(9.38) 

(9.39) 

(9.40) 
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The empirical values Zj = Z for s-electrons, Zj = Z - 4 for p-electrons, 
and Zj = Z - II for d-electrons have been found to be appropriate in 
formulas (9.37) and (9.40), but these non-relativistic expressions do not, 
as they stand, match the experimental results. Relativistic corrections are 
important particularly: (a) for s- and Pl/z-electrons because, in a des­
cription of their motion close to the nucleus, the non-relativistic approxi­
mation that the kinetic energy is much less than me2 breaks down seriously; 
(b) for large Z for which, in a central field, the relativistic factor (1 -
v2/e2)1/2 is related to (I - 0:2Z2)1I2. A summary of relativistic and other 
corrections can be found in Kopfermann'st book. 

To show the orders of magnitude of the corrections we compare in the 
table below Na I (Z = II), Cs I (Z = 55) and the alkali-like Bi V (Z = 83). 
In the second column of the table is given the ratio a,(relativistic)/as(non­
relativistic), and in the third column the ratio (a pU/a p3 2) (relativistic) 
which, from eq. (9.37), has the value 5 in the non-relativistic approxima­
tion. 

Na I (Z = II) 
Cs I (Z = 55) 
Bi V (Z = 83) 

a/non-reI) 
1·04 
1·5 
2·3 

5 x 1·01 
5 x 1·3 
5 x 2·0 

Thus, for s- and P1!2-electrons and large Z, factors of two or more are 
introduced. The corrected formulae for alkali-like spectra have led to 
remarkably accurate evaluations of nuclear moments from measure­
ments of the magnetic hyperfine structure. 

We have not discussed all the refinements in the problem of relating 
fld J to A. But we conclude this section by mentioning one anomalous 
effect, the so-called Bohr-Weisskopft effect. We might expect that for 
two isotopes the ratio of the A factors is equal tD the ratio of the fll/ J. 
This is not so, but rather Al/A2 = (1 + !1)(fldJ)d(fldJ)z where !1 is 
called the hyperfine structure anomaly for the two isotopes 1 and 2. This 
effect is one result of the finite size of the nucleus: the nuclear magnetic 
dipole moment must be regarded as distributed over the volume of the 
nucleus. so the interaction - J1l . Bel must be averaged over the nuclear 
volume. The differential effect between isotopes of different nuclear size 
can be significant for electrons which penetrate the nucleus (s- and P liZ­

electrons), leading to anomalies of the order of!1 ~ 1 per cent. Obviously 
the effect is only revealed when really accurate measurements of fll and 
of A are made independently. Nevertheless, a considerable amount of 
work on the hyperfine structure anomaly has been done and has given 
further information about nuclear structure. 

t H. Kopfermann, Nuclear Moments, Academic Press. 1958. 
t A. Bohr and V. F. Weisskopf. Phys. Rec-. 77,94, 1950. 
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9.4. Magnetic hyperfine structure in two-electron spectra 

In first-order perturbation theory the energy shift arising from the mag­
netic dipole interaction in two-electron spectra is just the expectation 
value of the perturbing Hamiltonian, eq. (9.31). In the IJ coupling 
approximation the zeroth-order wave functions are labelled by I and J as 
good quantum numbers. The experimentally determined parameter A(J) 
can be related to the a-factors for the individual electrons provided an 
appropriate coupling scheme for the electrons is chosen. 

We shall treat one simple example, namely the nln's configuration, in 
the LS coupling approximation. The reason for not attempting a more 
general many-electron problem in this book is that the matrix elements of 
the second term in eq. (9.31), the spin-dipole part, are not easily evaluated 
by elementary methods. The configuration nln's is an important one to 
discuss in any case, because the unpaired s-electron gives rise to an 
appreciable hyperfine structure in comparison with which the contribu­
tion of the nl electron can often be neglected. We adopt this approximation 
and put 

If we give the nl electron the suffix 1 and the n's electron the suffix 2 we can 
write the combined wave function as IL(sls2)SJ;l;FMF) where L = II, 

12 = 0, 51 and 52 are coupled up to their resultant S, Land S have the 
resultant J, and J and I have the resultant F. The Hamiltonian of eq. (9.31) 
has only one term 

:If = an,J . 52, (9.41 ) 

where 

(9.42) 

In taking matrix element diagonal in Sand J, we project 52 on S first (LS 
coupling) and then S on J (IJ coupling) to obtain 

!J.E = <L(SIS2)SJ; I; FMF lan'sl . ( (52' S)(S . J) J)I 
S(S + I)J(1 + 1) 

x L(SIS2)SJ; I; FMF) 

= a, ! {S(S + 1) + S2(S2 + 1) - SI(SI + I)} 
n s 2 S(S + 1) 

x ! {J(J + 1) + S(S + 1) - L(L + I)} 
2 J(J + 1) 

x <JIFMFI I . J IJIFMF). (9.43) 
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On the other hand, the Hamiltonian is also 

Yf = A(J)I . J (9.44) 

in the IJ coupling approximation, so 

A(J) = a, J(J + I) + S(S + 1) - L(L + 1) 
n s 4J(J + I) 

(9.45) 

since S2(S2 + 1) and s,(s, + 1) both have the value l Thus we have 
related A(J) to an's' 

The terms belonging to the configuration nln's are 3L and' L. Remem­
bering that S = 0 and J = L for the singlet we have 

(9.46) 

and 

AeL ) = ,J(J + I) + 2 - L(L + 1), 
J an s 4J(J + 1) 

J = L + 1, L, or L - 1. (9.47) 

The vanishing of A(' LJ ) is a consequence of the way in which s, is coupled 
to S2 to give S = 0 so that the magnetic field at the nucleus averages to 
zero. Thus for example the line 5s5p 'p ,-5s5d 'D2 at 6,438 A in the 
spectrum of Cd I is a very narrow line because even under high resolution 
the hyperfine structure arising from the 5p electron (and still less from the 
5d electron) is too small to be resolved. In fact this line was once used as a 
wavelength standard. (There is also, in principle, an unresolved structure 
due to isotope shift in natural cadmium which consists of several isotopes 
but this structure is very small.) 

9.5. Electric quadrupole interaction 

The electrostatic interaction between a proton, charge e, with co-ordinate 
rn, and an electron, charge -e, with co-ordinate re is 

-e2 

.Yf = -----
4neolre - rnl 

(9.48) 

where the origin of co-ordinates is the centre of mass of the (infinitely 
heavy) nucleus. If we sum over the protons of the nucleus and over the 
electrons we have the total electrostatic interaction between the nucleus 
and the electrons. 

So far we have considered the nucleus as a point charge (rn « re) with 
spherical symmetry. In order to be able to discuss departures of the 
nuclear charge distribution from spherical symmetry we should like to 
attribute to the nucleus electric multipole moments. To do this we have to 
separate the nuclear from the electronic co-ordinates. We can achieve a 
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separation if we assume re > rn' that is if we ignore for the time being 
penetration of the nuclear volume by the electrons. With this assumption 
eq. (9.48) can be expanded in powers of rnlre and in Legendre poly­
nomials Pk (cos Oen) where Oen is the angle between re and rn: 

('2 
_ -- f r2 + r2 _ 2r r cos (J 1 - 12 

41tEo len e n ~ en j 
ff = 

('2 rk 

- 4-- L k: 1 Pk (COS 8en ) 
ncO k re 

('2 ('2r e2r2 
- 4--- - -4 n 2 PI (cos (Jen) - 4~ P2 (cos (Jen) ... (9.49) 

ncore nBore nco,. e 

The first term represents a monopole interaction which, when summed 
over the protons and electrons, becomes - Li Ze2/4ncore,. We have 
already discussed this spherically symmetric term as the nuclear part of 
the central field interaction, and we shall now omit it. The higher order 
terms represent electric dipole, electric quadrupole interactions, etc., and 
we assume that the series converges sufficiently rapidly that we need not 
consider terms of order higher than k = 2. We can complete the separa­
tion of co-ordinates by applying the spherical harmonic addition theorem 

4n k 

Pk (cos Oen) = 2k + 1 q f.-k (-1 )qyk-q(On, <Pn) n(O., <Pe) (9.50) 

where the n are spherical harmonics of rank k, projection q. These 
harmonics have been given in eq. (2.42): the integers k and q are formally 
analogous to I and m[ respectively in eq. (2.42), and the spherical polar 

z -f' 

y 

x 
Fig. 9.2. Definition of the angles Bn, I/>n for a proton, charge e, and of Be< 1/>, for an 

electron, charge -e, together with the angle e,n between rn and r,. 
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co-ordinates e and <p are defined with respect to an arbitrary z-axis fixed 
in space (see Fig. 9.2). The electric quadrupole term of eq. (9.49) can now 
be written 

q~2 (_I)q{(~n)'iZ er~Y2-q(n)}{(~n)'!2 (4n~o:;) Yi(e)} 

== I (-I)qQiq(n)Fi(e) (9.51) 
q 

and when summed over the protons and electrons this is the nuclear 
electric quadrupole interaction with the electrons. It is the scalar product 
of a nuclear and an electronic tensor, each of rank two, and as it stands is 
rather complicated. 

Matters are greatly simplified if we assume, as usual, that the IJ coupling 
approximation is valid. This implies that the nucleus has a definite nuclear 
spin I and the direction of I establishes an axis of cylindrical symmetry. 
In this angular momentum representation we only deal with matrix 
elements diagonal in I, and we can take the direction of! to be the principal 
axis for the quadrupole tensor. Now we can define a nuclear electric 
quadrupole moment in terms of the expectation value, in the state 
II, M[ = I), of the nuclear part Q~(n) of the operator ofeq. (9.51). From 
table 2.1, (4nIW/2y~(en' <Pn) = t(3 COsZ On -I), and the conventional 
definition of the nuclear electric quadrupole moment Q is 

Q == ~~, M[ = II ~ Q~(n)i II, M[ = I) 

= <II I ~ r~,(3 cos
2 

On; - 1) I II) (9.52) 

where the sum is over the protons in the nucleus. (The assumption that 
the state I II) has a definite parity requires that the nuclear electric dipole 
moment, similarly defined, is zero. Therefore we can omit the second term 
in eq. (9.49).) The whole point about dealing with states of definite I is 
that all five components of the tensor operator Qiq(n) are proportional 
to Q and have matrix elements diagonal in I which are proportional to 
tensor components of an operator made up of the components of I itself. 
This statement is just an application to tensors of the general theorem 
which we applied to vectors in eq. (7.42). The effective operators for 
Qz-q(n) aret 

o eQ z 
Qz = 21(21 _ I) [3Iz - 1(1 + I)], 

Qfl = +t(6)1/Z 2I(2~Q- 1) [/zI± + I±Iz ], 

Qfz = t(6)1/2 2I(2~Q- I) I~. 
t See N. F. Ramsey, Molecular Beams, O.D.P., 1956, p. 61. 
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In exactly the same way the average gradient of the electric field produced 
by the electrons at the nucleus is defined by 

~ Ull 0: ~e Ill) = ~ <Ill L Fg(e)i Ill) 
e uZ e i 

(9.54) 

where the sum is over the electrons. 
The product, eq. (9.51), gives the Hamiltonian for the quadrupole 

interaction in terms of angular momentum operators: 

£. = e /OZVe)[3(I. J)z + ~I . J - /(I + 1)1(1 + I)J (9.55) 
Q Q"\.ozz 2/(2/ - 1)1(21 - 1) 

which is the quantum-mechanical form of the classical expression 

(9.56) 

for the interaction of a nuclear electric quadrupole moment with the 
gradient of the electric field produced by the electrons. In eq. (9.56) ()IJ is 
the angle between the directions of I and J which are the principal axes of 
the nuclear and electronic systems. The derivation of eq. (9.55) is much 
more complicated than that of the magnetic dipole interaction, but it is 
important to realize that the quadrupole interaction involves tensors of 
rank two. 

The quadrupole moment Q is positive if the nuclear charge distribution 
is elongated along the direction ofI (prolate) and negative if the distribu­
tion is flattened (oblate). The magnitude of Q is determined by <r~). As 
defined. it has the dimensions of area, and the unit 10- Z8 m Z is called a 
'barn'. The magnitude of oZVe/oz2 is determined by (1M), and what is 
measured experimentally is the product 

(9.57) 

Since there have been no direct measurements of the interaction of Q 
with a gradient of a static electric field produced in the laboratory, 
knowledge of Q from spectroscopic measurements of B is no more 
accurate than the knowledge of (I/r;). In view of certain important 
corrections which have to be applied to (I/r~), the values of nuclear 
electric quadrupole moments are not known at all well, say ± 25 per cent 
except in special cases. 

The quadrupole interaction causes a shift of the hyperfine structure 
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levels. In first order this energy shift is 

I1EQ = < IJFMF I £Q IIJFMF ) 

B 1K(K + 1) - 2/(l + I)J(1 + 1) 
4 1(21 - I)J(2J - I) 

(9.58) 

where 
K = F(F + I) - J(J + 1) - l(l + 1). (9.59) 

This interaction vanishes for S terms, because <0 2 Ve/oz 2
) vanishes when 

the electron charge distribution is spherically symmetrical. As remarked 
before, the interaction also vanishes unless I ~ I, J ~ I. In other terms 
we have, combining the magnetic dipole and electric quadrupole shifts, 
eqs. (9.33) and (9.58): 

A B 1K(K + I) - 2/(l + I)J(J + I) 
I1E = - K + - , 

2 4 1(21 - I)J(2J - I) 
(9.60) 

which shows that the quadrupole interaction gives rise to a departure 
from the interval rule because its dependence on F is different from that of 
the magnetic dipole interaction. When B/ A is sufficiently large even the 
order of the F-levels may be different from that when B/A = O. 

Let us consider the line 4,031 A in sSMn as an example of a small 
departure from the interval rule. Walthert has made precise optical 
measurements on this line and from the results has evaluated QCSsMn). 

Inter/'al 
F - (F - I) 

6-5 
5-4 
4- 3 
3-2 

Table 9.1 

Experimental 
interval 

mK 

86·65 ± 0·1 I 
71 ·55 ± 0·20 
56·53 ± 0·20 
41·96 ± 0·30 

85·74 
71-45 
57·16 
42·87 

Departure from 
interval rule, 

mK 

+ 0·91 
+ 0·\0 
- 0·63 
- 0·91 

The transition is 3ds4s2 6S S / 2-3ds4s4p 6P7 / 2 • For sSMn, I = t. To a 
first approximation the S-term has no quadrupole interaction because it is 
spherically symmetrical, and indeed the magnetic dipole interaction 
vanishes also because of the symmetry of the half-filled shell d s. (Actually 
A(6S S /2 ) = -2·415694mK and B(6S s/2 ) = -6,1 x 1O-4 mKasmeasured 
accurately by magnetic resonance in an atomic beam, but these values 
only lead to small corrections in the optical work.) The 6P7 / 2 level, on the 
other hand, has both magnetic dipole and electric quadrupole hyperfine 
structure. The experimental intervals between F-Ievels, with small correc­
tions, are given in the second column of table 9.1, and with A (6p 7/2) = 

t H. Walther, Z. Phys. 170,507, 1962. 
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14·29 ± 0·05 mK the expected intervals obeying the interval rule are 
given in the third column. The departures from the interval rule are shown 
in column four, and these are a measure of B(6P7/2)' 

From these data the value B(6P7/2) = 2·2 ± 0·4 mK is obtained. The 
energy level scheme is shown in Fig. 9.3, and a beautiful recording of the 
line profile is shown in Fig. 9.4. The value of QCSsMn) itself is actually 
about 0·35 barns, which is fairly typical as to order of magnitude. 

6 
F?,12 

F Interval rule 
6 

5 

4 

3 

2 
1 

+ quadrupole 
+0, 2508 

-0· 

-0 

-0· 
+0, 
+0, 

2648 

3008 

071 8 
2508 
5358 

r-r"-.V~~~ 

v-

Fig. 9.3. The hyperfine structure splitting of the transition 3d54s2 6S S / 2-3d5 4s4p 
6P 7 / 2 in ssMn. The departure from the interval rule as a result of the quadrupole inter­

action is shown. 

For a single electron we have, non-relativistically, 

b. = _ 2j - I ~ Q /~"" 
J 2j + 2 4m;o ~.: / 

(9.61) 

which is the analogue for the quadrupole interaction of 

OJ = ;;~ : ~; (~~) (2~B ~1)0)' (9.62) 

for the dipole interaction, eq. (9.20). When the nuclear magnetic moment 
~l can be found directly the value of <lfr3

) derived from a measured 
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value of aj in eq. (9.62) is commonly used in eq. (9.61) to evaluate Q from 
bj . However, considerable care has to be taken in working out the higher 
order corrections to these I/r3 parameters and it is the uncertainty in 
these corrections which effectively limits the accuracy to which values of 
Q can be quoted. 

I 

A A 0 A 
!l;Jvuulj~ 

I\A~(\I 
'--------------------------- --~ 

Fig. 9.4. Part of a recording of the Mn I line 4,031 A. Range of dispersion: 416·73 
mK. Upper trace: measurement with an atomic beam in absorption. The quantity 
(/0 - 1)110 is recorded (/0 is the intensity without the atomic beam and I is the intensity 
with the atomic beam). Lower trace: measurement with a hollow-cathode light source 
(current 5 mA, 0·5 Torr of Neon). The signal current from the multiplier was recorded. 
The wavenumber increases towards the right. The wavenumber scale is the same for 
both traces. By permission from Walther, H., Das Kernquadrupolmoment des 55Mn, in 
Zeitschrift fiir Physik Bd. 170, pp. 507-525, Berlin-Gottingen-Heidelberg: Springer 

1962. Notice particularly the difference in resolution between the two traces. 

It is interesting to compare the orders of magnitude of hj and aj for 
non-s electrons. We have hj ~ e2r~/41rEoa6 = (r~/a~)e2/41rEoao whereas 
aj~ ("'o/41r)"'B"'1/a~~ ("'o/41r)(m/M)",~/a6~ (m/M)a2 e2/41rEoao. 
Hence 

(9.63) 

~ I, 

since r~/a'6 ~ 10- 8
. This result is quite coincidental because the magni­

tude of r~ is determined by the strength of nuclear forces whereas a'6 and 
rx 2 depend on the strength of electromagnetic forces. The 8-pole and 
16-pole interactions are less than the 2-pole and 4-pole interactions by a 
further factor of order r~/a'6. 

9.6. Zeeman effect of hyperfine structure 

The Zeeman effect of hyperfine structure in the IJ coupling approxima­
tion is concerned with the interaction of the total electronic magnetic 
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moment JlJ and of the nuclear magnetic moment Jll with a steady magnetic 
field along the z-axis. This interaction removes the (21 + I )(2J + 1)­
fold spatial degeneracy of the hyperfine structure energy levels. The 
formalism of this interaction is very similar to that of the Zeeman effect of 
fine structure, and we shall be able to quote some results by analogy, 
without derivation. The significant difference between the Zeeman effects 
in hyperfine structure and in fine structure lies in the orders of magnitude 
involved. Whereas we found that the strong-field case is rare in fine struc­
ture, this is not so in hyperfine structure; furthermore, III « IlJ and we 
can often neglect the direct interaction between the nuclear magnetic 
moment and a weak external field, whereas in the analogous situation we 
could not neglect Ils in comparison with ilL- The Zeeman effect finds an 
application in the determination of nuclear spins and moments by 
magnetic resonance methods of spectroscopy. 

Let us now consider the IJ coupling approximation in which the 
central field and all electrostatic and magnetic interactions internal to the 
electron system are included in a zeroth-order Hamiltonian. We apply as a 
perturbation the nuclear magnetic dipole interaction and the Zeeman 
terms. We omit the nuclear electric quadrupole interaction to simplify 
the problem, not because this interaction is small. The reason we include 
the magnetic dipole interaction in the perturbation and not in the zeroth­
order Hamiltonian is that it is not necessarily large compared with the 
Zeeman terms. The perturbation, then, is 

Yf = AI . J - JlJ . B - Jll . B, 

where the equations 

= AI . J + 9JIlBJzB - g~IlBlzB, 

JlJ = -9JIlBJ, 

Jll = g~IlBI 

(9.64) 

(9.65) 

(9.66) 

now define the g-factors. We are using the notation in which g~ is a small 
number of order IlN/IlB = m/ M (see eq. (9.3a)). The field is weak if 
9JIlBB « A, and strong if 9JIlBB » A. If A/h is typically of the order of 
1,000 MHz in frequency units, then the field is strong provided B» 
A/IlB = 1,000/1-4 X \04 ~ 0·07 T, quite a modest field. 

For a weak field we apply first the perturbation AI . J and find that the 
IIJFMF ) representation is appropriate. The levels are split according to 
eq. (9.33). The hyperfine structure levels (I, J, F, M F) are degenerate with 
respect to M F . We now apply the Zeeman terms 9JIlBJzB - g~IlB/zB as a 
perturbation and in doing so we use the representation IIJFMF ), for in 
spite of the degeneracy we can proceed as in non-degenerate perturbation 
theory because Jz and Iz separately commute with Fz. Hence, just as in the 
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case of fine structure, we obtain an energy shift (see eg. (8.9) and (8.13)). 

11£ = gFI1BBMF (9.67) 

where gF is an effective g-value analogous to eg. (8.14): 

F(F + I) + J(J + I) - J(l + 1) 
gF = gl 2F(F + I) 

, F(F + I) _. J(J + I) + J(l + I) 
- g[ 2F(F + I) (9.68) 

Since g~ « gl we can usually neglect the second term in eg. (9.68), that is 
we neglect the direct interaction of the nuclear magnetic moment with the 
laboratory field. On the other hand the first term in eg. (9.68) does not 
reduce to gl under this approximation but contains J on an egual footing 
with J. This is because the interaction between the nuclear magnetic 
moment and the field of the electrons is large (A » gll1BB) in the weak 
field case, and in considering the interaction - III . B we have to project 
III on to F first. The projections involved are illustrated in the vector 
model picture (Fig. 9.5). The total energy shift in first order is 

(9.69) 

The energy levels depend linearly on B, and eg. (9.69) is illustrated in 
Fig. 9.6 for the case J = ~, J = 3. There are four possible values of F, and 
for each of these the values of gF/gl are 

F 

/ 

/ 

9 
"2 

35 

105 

B 

fLz 

7 
"2 

25 
105 

5 
"2 

3 

105 

3 
"2 

63 
105 

Fig. 9.5. Vector model for Il. showing the projections first on the direction of F and then 
on the z-axis. The interaction between III and the external field is neglected. 
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9.6. Zeeman effect of hyperfine structure 

In this particular example the value of gF= 3(2 turns out to be negative. 
This happens when, in the classical vector triangle F = I + J, the angle 
between J and F is obtuse. In general, for 1 > J gF is largest for the largest 
F, for 1 = J gF = ~ gJ, independent of F, and for 1 < J gF is smallest for 
the largest F. 

LIE 

9/2 

F 
9/2~§::== 

-9/2 

7/2 

7/21C§:::" 

-7/2 

5/2 
5/2 -5/2 

-3/2 

3/2 

B-

Fig. 9.6. The Zeeman effect of hyperfine structure in low magnetic field where the 
energy depends linearly on field. J = t, I = 3. Note the inversion of the MF states for 

F=t. 
From eq. (9.69) there follows a straightforward method of measuring 1 

when J and gJ are known, without a knowledge of A. If a magnetic dipole 
transition, AF = 0, AMF = ± 1, can be observed, the frequency is 

hv = gFJ1BB. (9.70) 

In particular, for F = 1 + J, gF = gJJ/(I + J) from eq. (9.68) in whichg~ is 
neglected, and 

J 
hv (F = 1+ J) = gJ --JJ.lBB. 

1+ 
(9.71) 

Such a transition is always observable in a magnetic resonance experiment 
by the method of atomic beams.t Apart from I, the only unknown in eq. 

t See, for example, as a general reference N. F. Ramsey, Molecular Beams, O.U.P., 1956. 
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(9.71) is B which is usually measured in terms of another element for 
which gj, J, and I are known. In particular it is sometimes possible to 
compare the frequencies VI and V2 for two isotopes of the same element in 
a fixed field B, in which case 

VI 12 + J 

V2 = II + " 
(F = 1+ J). (9.72) 

In eq. (9.72) gJ and B have cancelled out. The nuclear spins of many 
radioactive isotopes have been determined in this way. 

Within the limitation of the IJ coupling approximation the perturba­
tion gJf1BBJz (with the term in g~ ignored) leads in second order to an 
energy shift 

f..E = L I <IJFMFI gJf1BBJz IIJF'MF)1 2
. 

F' EF - EF' 
(9.73) 

The matrix elements in this expression are diagonal in M F because Jz 
commutes with Fz • Thus states of the same M F and different F within a 
manifold of given I and J 'repel each other' in this approximation, and 
the additional energy shift of eq. (9.73) is of the order of (gJf1BB)2jA. 
Measurement of f..F = 0, f..M F = ± I transitions, for example by mag­
netic resonance in an atomic beam, at a magnetic field high enough for the 
term (gJf1BB)2 jAto become significant now yields approximate informa­
tion about the value of A, whereas at lower fields where the energy states 
depended linearly on B the transition frequency was independent of A. 
Such measurements have been used to estimate previously unknown 
values of A with precision sufficient to render a subsequent search for 
f..F = ± 1 transitions at zero field (or very low field) successful. The latter 
transitions lead to a precise determination of the zero-field hyperfine 
structure intervals. For example, from eq. (9.69) the transition F ~ F - I, 
f..M F = 0, has the frequency 

(9.74) 

which yields A with a small correction for the effect of the magnetic field. 
For the transition in which M F = 0 there is no magnetic field correction in 
first order. 

The selection rules for magnetic dipole radiation follow from the 
general considerations of section 7.4. There is no change of parity, so 
transitions can take place within a hyperfine structure multiplet; and in 
weak field f..F = 0, ± I, F = 0 + F = 0, f..MF = 0, ± I. The frequency 
is so low (radio frequency) that spontaneous emission can be completely 
neglected. Emission and absorption are induced by an oscillating magnetic 
field. The polarization is such that for an oscillating magnetic field parallel 
to the z-axis, defined by the direction of the steady field B, f..M F = 0 
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(0" polarization), and for an oscillating magnetic field perpendicular to the 
z-axis 11M F = ± 1 (n polarization). The nomenclature 0" and n is opposite 
to that for electric dipole radiation because the oscillating magnetic field 
in an electromagnetic wave is perpendicular to the electric field. 

The criterion for a strong field is 9JIlBB » A. Then, in eq. (9.64), 
9JIlBJzB is the largest term and M J becomes a good quantum number. 
But since the complete Hamiltonian of eq. (9.64) commutes with I z + 
Jz = Fz> M = M[ + MJ = MF is always a good quantum number 
(lz + Jz = Fz is a constant of the motion) whatever the magnitude of the 
field-see the analogous eq. (8.26). Hence M[ is also a good quantum 
number even though the term - Ji[ . B may not be large compared with 
AI . J. The representation appropriate to strong field is then IIJM[MJ), 
and in first order the Zeeman terms give an energy shift 

I1E = <IJM[MJI 9JIlBJzB - g~IlBlzB IIJM[MJ) 

= 9JIlBBMJ - g~IlBBM[. 

In first order the AI . J term contributes 

I1E = <IJM[MJI A {IJz + t(l+J- + LJ+)} IIJM/MJ) 

= AM[M] 

to the energy shift, so the total energy shift is 

analogous to eq. (8.22). 

(9.75) 

(9.76) 

(9.77) 

In the limit of small g~ the selection rules for magnetic dipole radiation 
are 11M/ = O,I1M] = ± 1, which we can refer to as electron resonance in 
radio frequency spectroscopy. The frequency for such transitions is given 
by 

(9.78) 

Nuclear resonance-11M] = 0, I1M[ = ± I-is also possible, but in the 
limit of complete decoupling of I and J much greater radiofrequency 
power is required for nuclear resonance than for electron resonance. This 
is because the transition probability, which is proportional to 

is comparable with that for electron resonance only if the rotating field 
(Bx ± iBy) is gJ/g~ (~103) times as large as for electron resonance. This 
is equivalent to a factor of lO6 in the radiofrequency power. The transi­
tion frequency in nuclear resonance is 

(9.79) 
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which leads to a direct determination of g~ if A is known. Such a deter­
mination is independent of the electronic radial parameter <1lr3

), and 
is the basis for much work both in free atoms and in the solid state. 

A schematic energy level diagram for the example J = ~, I = 3, which 
we discussed for weak field, can now be completed. For strong field, with 
A > 0, g~ :::::: 0, the energy levels are shown at the right of Fig. 9.7. The 
weak-field and strong-field levels can be connected unambiguously by 
following the rule that levels of the same M = MF = M[ + M J never 
cross. 

JE 

F 

3/2 

_____ 3 

-------------- 3/2 

--------____ -3 

-3/2 

B-

Fig. 9.7. Zeeman effect of hyperfine structure. J = !, I = 3, A > 0, g; ::::; 0. At the 
left are the low-field states and at the right are the high-field states. In between, states of 
the same total M have simply been joined schematically by straight lines according to 

the rule that states with the same M never cross. 
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In the intermediate field region the energies of the states are given by 
the solution of a secular equation. Since M = MF = M J + M J repre­
sents a constant of the motion at all fields the matrix of the Hamiltonian 
(eq. (9.64)) breaks up into submatrices of given M. The case of J = t, 
arbitrary I, is an important simple one because it applies to the 2S 1/2 
ground states of hydrogen and of the alkalis on which a great deal of work 
has been done. Since M = M J ± t the largest secular determinant is 
2 x 2 and the energy shift can be expressed in closed form. The result is 
the well-known Breit-Rabi formula: 

/1E(F, M) = 

where 

h /1v 
---- - g~J1BBM ± th /1v 
2(21 + 1) 

{ 
4M }1/2 

x I + ---x + x 2 

21 + 1 

(gJ + g~)J1BB x = --c:---
h /1v 

(9.80) 

(9.81) 

and h /1v is the separation between the levels F = 1 + t and F = 1 - t 
at zero field. The upper sign in eq. (9.80) is taken for states which belong 

~ M, MJ .:if 
h.:iv 1=3/2 3/2 

J= 112 1/2 

-1/2 
1/2 

F=2 

Or-----~~+_----------~-

Fig. 9.8. A plot of the Breit-Rabi formula for the case I = l The abscissa is x = 
(gJ + g;) IlBBI(h/:;'v) where h/:;'v is the energy difference between the levels F = 2 and 
F = 1 at zero field. This plot would apply, for example, to the 25"2 ground level of 

J9K. (See problem 9.5.) 
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at low field to F = I + ! and the lower sign for states which belong to 
F = I -!. The quadrupole interaction, which we omitted for con­
venience in our earlier discussion, vanishes for J = t so there is no 
approximation in the Breit-Rabi formula in this respect. If the small term 
g'l/lsBM is omitted, the use of the parameter x as a measure of B allows one 
to make a universal plot of AE/(h Av) against x. Such a plot is shown in 
Fig. 9.8 for I = l 

The Zeeman effect of hyperfine structure is important in magnetic 
resonance methods of spectroscopy, as mentioned earlier. Of these, the 
method of atomic beams has had particular success in the study of ground 
states and metastable states of atoms, including short-lived radioactive 
atoms. For excited states, on the other hand, very little work has been 
done with atomic beams, and much of the data has been obtained from 
optical spectroscopy. Recently, however, the methods of optical pumping, 
double resonance, and level-crossing spectroscopyt have provided data 
on the hyperfine structure of excited states, and more recently still. the 
techniques of Doppler-free laser spectroscopy have begun to be used. All 
this work is of interest not only because it has provided measurements of 
nuclear properties but also because it has stimulated a renewed effort to 
understand the way in which calculations on atomic structure should be 
made. 

9.7. Isotope shift 

In this section we shall give an account of isotope shift in spectral lines. 
The account will be brief because there are several accessible review 
articles! on this subject. 

We have already come across an example of isotope shift in chapter 2, 
where we saw that the use of the reduced mass in a description of the 
hydrogen spectrum (see eq. (2.58» adequately accounted for the fre­
quency difference between the spectral lines of hydrogen and deuterium. 
For many-electron atoms the nuclear properties which give rise to isotope 
shift are the finite mass and the extended charge distribution of the nucleus. 
Thus we are abandoning the approximation of an infinitely heavy point 
charge in two respects, and we attempt to distinguish between the two. 

The mass effect may be treated by considering the kinetic energy opera­
tor in Schrodinger's equation: 

2 2 

T = ~ + L ~ (9.82) 
2M i 2mo 

t See, for example, B. Budick, Advances in Atomic and Molecular Physics, 3, 73, 1967. 
This is a review article in which reference is made to the originators of the various optical 
techniques. See also section VI. D. of H. Kuhn, Atomic Spectra, 2nd. Ed., Longmans, 1970. 

t See, for example, H. Kopfermann, Nuclear Moments, Academic Press, 1958, chapter I, 
section IV; G. Breit, Rev. Mod. Phys. 30, 507,1958; A. R. Bodmer, Nuc!. Phys. 9, 371,1959; 
and, more recently, D. N. Stacey, Reports on Progress in Physics, XXIX, 171, 1966; H. Kuhn, 
Atomic Spectra, 2nd Ed., Longmans, 1970, section VI C. 
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where Pn and M are the momentum and mass of the nucleus, and Pi and 
mo are the momentum and mass of the ith electron. From conservation of 
momentum for a stationary atom 

(9.83) 

and so eq. (9.82) may be re-written 

T = O::i Pi)2 + Li P; 
2M 2mo 

=L
2
'MP; +Ml L Pi . Pj + L2i pf. 

i>J mo 
(9.84) 

If at first we ignore the second term in eq. (9.84) which contains the dot 
product of electron momenta, the remaining two terms can be combined 
with the introduction of the reduced mass m = moM/(mo + M). Ex­
plicitly, an energy level E(M) for an atom whose nucleus has a finite 
mass M is raised above the fictitious level E( CD) for an atom whose 
nucleus is infinitely heavy: 

M 
E(M) = E( (0) --­

M+ mo 
(9.85) 

just as in eq. (2.58). We choose E( (0) as a reference level and use the 
notation l'iE for E(M) - E( Cf), so 

l'iE = -E(oo) mo (9.86) 
M + mo 

For two isotopes whose nuclear masses, M and M', differ by bM we use 
the notation b(l'iE) for energy difference: 

mo bM 
b(l'iE) ;::::; E( Cf) . M M' . 

Finally, for the observed spectral line the wavenumber shift is 

s;- mo bM _ 
uV:::::; ---v 

MM' 

(9.87) 

(9.88) 

where the isotope of greater mass has the larger wavenumber. This 
phenomenon is known as the normal mass shift. The fractional shift bVjv 
is easily calculated: it is largest for hydrogen-deuterium for which 
bv/v = 2·7 x 10- 4

. Because of the proportionality to I/M2 its effect is 
small in heavy elements. 

Inclusion of the cross term in eq. (9.84) leads to an additional isotope 
shift in spectral lines known as the specific mass shift. This term involves a 
correlation between the motions of a pair of electrons, and the effect is 
very difficult to calculate for many-electron atoms. Like the normal shift, 
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the specific mass shift falls off as 1/ M 2 with increasing M, and is very small 
in the heaviest elements. Unfortunately the mass effects are not negligible 
in the intermediate region of Z = 50, and although some attempts have 
been made to estimate the specific mass shift in this region most of the 
work has been devoted to calculations for very light elements. 

As a first approximation one can treat the operator 

i> j i > j 

by perturbation theory. This leads to an energy shift in first order (again, 
the reference level is E( (0) ) 

li
2 f 11£ = -~ I 1/1* Vi . Vjl/l dT 

Mi>i 
(9.89) 

where 1/1 is the many-electron wave function. From this one next needs to 
find f>(I1£) for two isotopes and hence f>ii for spectral lines. We shall not be 
able to discuss this mass effect further. except to remark that it is clear that 
the success of the calculation depends on the accuracy of the wave 
function ~ 

Isotope shifts arising from the variation of the charge distribution of 
the nucleus from one isotope to another (sometimes called field effects) 
have received much attention, because the measurement of these shifts in 
spectral lines enables one to study the size and shape of nuclei as a function 
of neutron number. A good reason for wanting to estimate mass effects. 
especially the troublesome specific mass effect, is that the mass shifts have 
to be subtracted from the experimental results if the pure nuclear charge 
effects are to be investigated. 

To treat the field effects we go back to the electric monopole interaction 
between the nucleus and the electrons of an atom, and consider the 
departure, for real nuclei. from the pure Coulomb potential of a nuclear 
point charge. We need a probe of the nuclear electric charge distribution: 
that is, we need to consider s-electrons,t whose charge density does not 
vanish in the region of the nucleus. Then we can expect an isotope shift 
in a spectral line for which the number of s-electrons is different in the two 
terms involved in the transition. 

Early in the history of isotope shift it was realized that a relativistic 
treatment is necessary for evaluating the s-electron density [1/1(0)[2 at the 
nucleus. Further, a first-order perturbation treatment is not really ade­
quate: for in that theory one calculates 11£, the energy shift of a term 
arising from the difference in electrostatic potential between a finite 
nucleus and a fictitious point nucleus, on the assumption that [1/1(0)[2 is 
the zeroth-order electron density appropriate to a point nucleus. This 

t In a relativistic treatment, P, electrons also have a non-vanishing charge density near 
the origin. Other electrons with I # O. however, can be regarded as probing the nucleus to a 
negligible extent. 
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9.7. Isotope shift 

approximation is not very accurate because the finite nuclear charge dis­
tribution causes a significant modification to I tft(O)1 2 

• 

Notwithstanding these important qualifications, we shall give a brief 
account of the non-relativistic, first-order perturbation treatment to 
obtain an order of magnitude of the field effects in heavy elements. We 
assume for simplicity a nuclear model in which the charge distribution is 
spherically symmetrical with radius ro given by 

r 0 = 1·2 x 10 - 1 3 A l! 3 cm (9.90) 

where A is the mass number; and we consider the isotope shift of a term 
for two isotopes whose nuclear radii differ by 

bro 1 bA 

ro 3 A 
(9.91) 

This particular field effect is called the volume shift. In first order the 
contribution to the energy shift of a term from each electron is the expec­
tation value of the electrostatic potential energy difference V(r) - Vo(r), 
where V(r) is the potential energy appropriate to an extended nucleus and 
Vo(r) is that appropriate to a point nucleus. Thus 

f't..E = Loo tft*(V(r) - Vo(r»tft4nr2 dr 

~ Itft(0)1 2 to (V(r) - Vo(r»4nr2 dr. (9.92) 

In this equation we have restricted the range of integration to 0 ,,; r ,,; ro 
since, by Gauss's theorem, V(r) = Vo(r) for r ?o ro; and we have assumed 
that over this range the electron charge density is approximately constant 
and has the value - e I tft(O)1 2 

. For a uniform nuclear charge distribution it 
can easily be shown that (see problem 2.9(e» 

(9.93) 

whereas Vo(r) = -Ze2/4n<-or,sof't..Ebecomes 

4n Ze 2 

f't..E = TO Itft(0)1
2 

4n<-0 r6· (9.94) 

On the assumption that all the electrons move independently in the central 
field of the nucleus, this expression for f't..E should be summed over all 
s-electrons. But since we are dealing with a spectral line we need only sum 
over those valence s-electrons by which the two terms involved in the 
transition differ. 
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The quantity which is directly related to observation is the difference in 
11£ for two isotopes: 

4n 2 Ze 2 
2 (5ro (5(11£) = - It/I(O) I - ro -. (9.95) 

5 4n£0 ro 

It is conventional to re-write this in the following form 

(5(11£) = It/I(O)1 2 rra;i x ~ Rx. ( 2ZrO)2 (5ro 
Z 5 ao ro 

(9.96) 

which can be written in the more general case 

(9.97) 

This expression is a product of two factors: the first factor depends, 
through It/I(O)1 2

, on the electron charge distribution and the second factor, 
C, is a function of the difference between nuclear charge distributions for 
two isotopes. 

In view of the simplifications we have made, the non-relativistic first­
order expression (9.96) for the volume shift gives no better than an order 
of magnitude estimate. Nevertheless the form of eq. (9.97) is satisfactory, 
and refinements can be introduced by modification of the factor C. 
Equation (9.96) indicates that the isotope with larger ro has the higher 
energy value and this is in agreement with experiment. Further, the 
expression suggests that the variation in the nuclear mean square radius, 
<r2), between isotopes is an important quantity for investigation. Not 
only differences in nuclear size, but also differences in nuclear shape 
contribute to (5<r2

). Thus it is of interest for nuclear structure to investi­
gate a run of C-factors along a series of neighbouring isotopes, and some 
work has been done with this in view. As the neutron number is increased 
by two in a series of even-even isotopes the lines for a given element are 
ordered according to mass number. But the lines are not necessarily 
equally spaced in frequency as would be expected from the model assumed 
in eq. (9.91), and these departures from equal spacing are significant in 
the study of nuclear charge distribution. In particular a line of an isotope 
with odd mass number (or rather the centre of gravity of the hyperfine 
structure components of such a line) does not lie half-way between the 
lines of its even-even neighbours, but is displaced towards the line of the 
lighter isotope. The tentative explanation of this phenomenon, caII~d 
odd-even staggering, is beyond the scope of this discussion (but see, for 
example, the above-mentioned review article by Stacey who refers to the 
work of H. Stroke). 

To give an idea of the order of magnitude of experimental shifts we 
quote two examples of isotope shift measurements on elements in the 
middle of the periodic table-for heavy elements the shifts are larger. 
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Hindmarsh and Kuhnt have examined the transItIon 5sz6s ZSl/Z-
5sz6p ZP3/Z in Sn II (tin has many stable isotopes). They chose this transi­
tion with the expectation that the 6s electron would be responsible for a 
reasonable differential shift of the Zs l/Z level. The order of magnitude of 
the shift between even-even isotopes is 5 mK which is small enough 
compared with the line-width to necessitate the use of enriched isotopes, 
a procedure which has obvious advantages and is common practice in 
isotope shift work. The second example which we quote is the work of 
Kuhn and Ramsdent on the transition 4d l05p ZP3iZ-4d95sz Z051Z in 
Cd II. The isotope shift for the addition of two neutrons is in this case 
about 50 mK. This transition involves a two-electron jump, and the 
contribution of the two equivalent 5sz electrons to the isotope shift is 
expected to be twice as large as might have been the case if only one 
s-electron had jumped. This example brings out the distinction between 
the isotope shift, which arises from an electrostatic interaction, and the 
magnetic hyperfine structure, for which the 5sz electrons, paired off with 
respect to spin orientation, would give zero magnetic field at the nucleus. 
The hyperfine structure of this transition in the odd isotopes of Cd is in 
fact due largely to the d 9 configuration, and is of the same order of mag­
nitude as the isotope shifts. 

Finally, we mention that there are other spectroscopic ways of providing 
a probe of the nucleus with which to study nuclear charge distribution and 
isotope shift. One of these, the spectroscopy of muonic atoms, can be 
contrasted with optical spectroscopy as follows: whereas we have been 
speaking of the differential shift b(AE) of an energy level, which is the 
quantity deduced from the line shifts observed in optical spectra, one can 
derive AE itself from a study of muonic X-rays. The reason for this is that 
the energy levels E( 00) for a fictitious muonic atom containing a point 
nucleus can be calculated: the problem is a two-body one with certain 
corrections. In particular the specific mass effect is absent. Thus AE 
rather than b(AE) is obtained directly from experiment. There is a need 
for systematic data in these studies of nuclear charge distribution, and it is 
hoped that the developing field of measurement of isotope shifts by 
muonic spectroscopy will complement the work in optical spectroscopy. 

Problems 

9.1. Derive eq. (9.24) from purely classical considerations. 
9.2. For hydrogen in a non-relativistic approximation evaluate the 
following ratios of the hyperfine structure magnetic dipole splitting factor: 

a(n ZSl/Z): a(n zP l/Z): a(n zP3/Z): a(n 203/Z): a(n Z05/Z)' 

t w. R. Hindmarsh and H. Kuhn, Proc. Phys. Soc. A 68, 433,1955. 
t H. G. Kuhn and S. A. Ramsden, Proc. Roy. Soc. A 237, 485,1956. 
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9.3. Consider the hyperfine structure of the transition 5d 2 6s 4F912-
5d 26p 4G II12 in 139La. 

(a) Why might you suspect that the magnetic dipole hyperfine structure 
of the 4F 912 level is considerably larger than that of the 4G 1112 level? 

(b) Would you expect an electric quadrupole interaction to give a 
striking departure from the interval rule in the 4F 912 level? 

(c) In what follows assume that the hyperfine structure of the 4G II12 
level is negligibly small and that the electric quadrupole interaction can 
also be neglected. Those hyperfine structure components which are well 
resolved in this transition lie at 0, I I 1·0, 20S·0, 291 ·6,361 ·3, 417·0,459·2 mK 
above the lowest frequency component. By counting the number of com­
ponents set a lower limit to the nuclear spin of 139La. 

(d) The limits of error on the frequency measurements of the com­
ponents are about ±0·2 mK. Determine the value of the nuclear spin 
from the frequency measurements. 

(e) If a measurement of the relative intensities of the components were 
reliable, such a measurement would confirm the evaluation of the nuclear 
spin. What are the relative intensities expected to be? 

(f) Given that the 4F 9/2 level lies below the 4G IIIZ level, determine the 
sign of the magnetic dipole splitting constant A(4F 9/Z). Also estimate the 
magnitude of A(4F9IZ ) from the frequency measurements. 

(g) The transition has a wavelength of 6,250 A. What would be the 
Doppler width of the hyperfine structure components if the light source 
were run at room temperature? Comment on this, and on the use of a 
Fabry-Perot etalon to resolve the hyperfine structure. 
9.4. For the 3d 54s4p 6P 7 ;2 level of 55Mn discussed in the text find expres­
sions for the departures from the interval rule in terms of B, the electric 
quadrupole interaction constant. Then show that the value B(6p 7/2) = 
2·2 ± 0-4 mK is consistent with the experimental data of table 9.1, 
column 4. 
9.5. A magnetic resonance experiment by the method of atomic beams 
has been done to find the nuclear spin of 4°K, whose ground level is known 
to be Zs lt2 with gj = 2·0023. In this experiment a magnetic dipole transi­
tion I1F = 0, 11M F = ± I is observed in a weak magnetic field: the 
particular transition is F = F max = I + J, with M F = - (I + J - I) +--> 

M F = - (I + J), where I is to be found. (This transition is in fact the only 
one with I1F = 0 which can be observed in a conventional apparatus 
when J = 1.) The frequency of the transition is 1·557 M Hz in a certain 
field B which is evaluated by measuring the analogous transition fre­
quency with an atomic beam of 39K for which I is known to be ~: ve 9 K) = 

3·504 MHz. 
(a) What is the magnetic field B in gauss? 
(b) What is the nuclear spin of 4°K? 
(c) Estimate the precision to which the frequencies and gj need to be 
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known in order to distinguish the result for I(4°K) from neighbouring 
possibilities. 

(d) In a subsequent experiment the separation between the two Flevels 
in zero field is found to be 1,285·79 MHz for 4°K. What is the magnetic 
dipole splitting constant AeSl/Z) for 4°K? Can its sign be determined 
from this frequency measurement? 

(e) In a high field representation there is a group of states with M J = i 
and various values of M J • How many such states are there? Estimate the 
separation in energy between these M J states in a high field of (say) 0·5 T. 
(Neglect the direct interaction of the nuclear magnetic moment with the 
external field.) 

(f) The nuclear moment of 4°K is about - 1·3 nuclear magnetons. By 
how much does the direct interaction of the nuclear moment with the 
external field shift each of the energy states of part (e) in a field of 0·5 T? 
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Appendix A 

We summarize here without rigour some of the theorems of quantum 
mechanics which we shall want to use. 

A.1. Eigenfunctions 

An operator A representing an observable has a complete, normalized 
orthogonal set of eigenfunctions which are linearly independent. The 
word' complete' means that there is no other eigenfunction of A which is 
not a linear combination of members of the set. We confine ourselves to 
operators A which have a discrete set of eigenvalues a i . 

A.2. Degeneracy 

If there are m eigenfunctions U l' U 2 , ... , Urn of A corresponding to the 
same eigenvalue, the system is said to be m-fold degenerate. 

A.3. Expansion theorem 

Any physically acceptable wave function can be expanded in terms of a 
complete normalized orthogonal set of eigenfunctions ui : 

tp = I CiUi where f ujui dr = 6 ii' 

If U i is an eigenfunction of A with eigenvalue ai' i.e., 

AUi = aiui 

then the expectation value of A in the state tp is 

<A)'I' = f tp*Atpdr, 
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(A.I) 
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This means that if we make a measurement of A on a system in the state If' 
the result will be a i with probability kil 2, where Li Ic;l2 = 1 if If' is nor­
malized. Thus, the expansion is very like a Fourier expansion. In particu­
lar, if If' is identical with U i the coefficients Cjoti are zero. Then the result ofa 
measurement of A is, with certainty, the eigenvalue a i. 

A.4. Matrix elements 

Consider an operator B for which U i is not an eigenfunction. The expecta­
tion value ofB in the state If', where If' = Li CiUi' is 

<B)'I' = f If'*BIf' dr 

= ~ ~ cj (f ujBui dr) C i (A.4) 

which we shall write in the so-called Dirac notation 

<B)'I' = I I cj<il B I i)c i · (A.S) 
j i 

Thus, <il B Ii) is the i-ith element of a square matrix. Matrix elements 
depend not only on the operator (B) but also on the wave-functions used 
to compute them (u i , written Ii»). The particular choice of the set U i used 
in the expansion of If' is called the basis set of the representation U i . Whereas 
we introduced an expectation value as a kind of quantum-mechanical 
average, we now see that off-diagonal matrix elements arise as a direct 
consequence of the principle of superposition embodied in the expansion 
theorem. They are the interference terms. 

A.S. Hermitian operators 

We can reasonably demand that operators which represent actual dynami­
cal quantities should give real expectation values. This is guaranteed if 
such operators are Hermitian, that is, if they obey 

f ujBui dr = f (Bu)*u i dr (A.6) 

for then 
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(8)* = f ui(BuJ* dT 

= f (BuJ*ui dT 

= f utBui dT from (A.6) 

Appendix A 

= (B). (A.7) 

Hence, (B) is real. 
In the Dirac notation (A.6) is 

(i I B Ii) = (i I B I j) * , 

that is, a matrix element of a Hermitian operator is the complex conjugate 
of the transposed matrix element. In particular the diagonal elements are 
real: 

(il B Ii) = (il B ji)*. (A.8) 

An eigenvalue problem is the case when the representation is chosen such 
that off-diagonal elements vanish: 

<)1 A Ii) = a/Iii· (A.9) 

A.s. Commuting operators 

If A represents a real observable with non-degenerate eigenfunctions 
U i (or I i», that is, if 

(A. 10) 

then for another operator B 

(kl BA Ii) = (kl B li)ai• (A.II) 

Also if we expand a new function B Ii) in terms of the set u j (or Ii) ): 

Bli)=Lch), (A.12) 

where 

(il B I i) = C i (A.13) 
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from the orthogonality of the Ii), then 

<kl AB I i) = I <kl A Ii) <il B I i), (A.14) 

Hence, 

(A.15) 

But by hypothesis all the ai are different, so if B and A commute, i.e., if 
[B, A] == BA - AB = 0, from (A.15) 

<kl B Ii) = ° unless k = i. (A.16) 

This means that in a representation in which A is diagonal B is also dia­
gonal if B commutes with A. B and A have simultaneous eigenfunctions. 
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We quote here the results of time-independent perturbation theory in 
first and second order. 

We assume that we start with a zeroth-order eigenvalue equation 

(B.I) 

where U Orn is the eigenfunction belonging to the eigenvalue Eom for the 
state m of the zeroth-order HamiltonianH"~l' We shall write the zeroth­
order eigenfunctions UOm simply as 1m), so eq. (B.I) becomes 

(B.2) 

We now consider the effect of adding a small perturbation V to the zeroth­
order Hamiltonian ·Ylo to give 

:H" =ffrl + V. (B.3) 

We are chiefly interested to know how the energies are modified as a 
result of the perturbation. We have to distinguish two cases. 

B.1. Non-degenerate case 

It is assumed that all the Eorn are different, that is, the states 1m) are non­
degenerate. Then the first-order correction to the energy Eorn for the state 
m IS 

t:.E1m = <ml V 1m), (B.4) 

which is just the expectation value of the perturbation V taken with the 
unperturbed functions. 

The second-order correction is 

t:.EZm = I' <ml V Ik) <kl V 1m), 
k Eorn - EOk 

(B.5) 

where the summation is taken over all the states of the complete set which 
satisfies eq. (B.2), except the state m itself. The omission of the state m in 
the sum is indicated by the prime on the summation sign. The energy of 
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the state m, up to second order, is 

Ern = EOrn + I'1E lrn + I'1E2rn · (B.6) 

The label m is that appropriate to zeroth-order, and all the matrix ele­
ments of V are taken with zeroth-order functions. The wave function itself 
is modified by the perturbation. To first order it becomes 

, <kl V 1m) 
p 1m = 1m) + Ilk) ------. (B.7) 

k Eorn - EOk 

That is, the wave function is no longer the pure state m, but it now has 
some of the character of the other states k of the set. One says that the 
state k is mixed into the state m with amplitude 

Clearly the quantum numbers designated by the label m are no longer 
strictly good quantum numbers, but one retains the label m for P on the 
grounds that the amplitude of admixture akrn has been assumed to be 
small. 

B.2. Degenerate case 

If some of the states UOk are degenerate with U Om' Eom - EOk vanishes in 
the denominator of eq. (B.5), and one has trouble if <ml V Ik) f= 0. This 
difficulty can be overcome by choosing a different set of zeroth-order 
functions. This procedure emphasizes the arbitrary nature of the choice of 
representation UOm ' One naturally chooses the representation best adapted 
to the particular problem. If the first n functions UOI(l = I, ... , n) are n­
fold degenerate, all with energy E Orn ' we can start again and find a new 
set of normalized orthogonal functions UOj which are linear combinations 
of the U OI : 

n 

VOj = I CjIU O" 
l~ 1 

with the amplitudes Cjl chosen in such a way that 

<I'oil Vivo) = 0, i f= j, 

(B.8) 

(B.9) 

in the new v-representation. The new set of VOj are still n-fold degenerate 
eigenfunctions of ,)fo because 

·)foUOj = I cjl,:f{'oUO/, 
/~ 1 

= I Cj/EOmUOI from (B. 1 ) 
l~ 1 

from (B.8) (B.IO) 
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but now the troublesome terms in eq. (B.5) drop out. The choice of the 
expansion coefficients cj1 which achieves this result depends on the form 
of V through eq. (B.9): a diagonalization of the n-fold sub-matrix of V in 
the U 01 representation serves to evaluate the coefficients cj1 and hence to 
define the functions l'Oj through eq. (B.8). The first-order energy shift for 
one of the n degenerate states is then a diagonal matrix element of V in the 
v-representation: 

(B.ll) 

rather than eq. (B.4). 
The case of degeneracy occurs frequently in the theory of atomic 

structure. See, for example, how degenerate perturbation theory is applied 
to the fine structure of hydrogen (p. 68), the electrostatic interaction in 
helium (p. 77), the spin-orbit interaction in LS coupling (p. 125), the 
Zeeman effect in LS coupling (p. 147), and the magnetic-dipole hyperfine 
structure splitting (p. 171). 
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Notes on angular momentum; a summary of results. t 

C.1. Orbital angular momentum 

The classical definition of the angular momentum of a single particle 
about the origin of co-ordinates is 

5E = r x p. (Cl) 

In quantum mechanics this becomes an operator which is obtained by the 
replacement p ---> - ihV: 

hI = -ihr x V (C2) 

where we have introduced the factor h into the definition of! in order to 
avoid carrying units of h. 

The most important point about I is that its components do not com­
mute: e.g., 

but 

[lx, IJ = i/z' and cyclically. (C3) 

When there is more than one particle we can define a total orbital 
angular momentum operator 

L .= L I(i) (C4) 

which also satisfies the commutation relation (C3). 

C.2. General definition of angular momentum 

In order to include intrinsic spin angular momentum in our discussion we 
must generalize the definition of angular momentum. We consider as an 

t See. for example. R. H. Dicke and J. P. Wittke. Introduction to Quantum Mechanics. 
chapter 9. 
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angular momentum any vector observable hJ if it satisfies the extension 
of (C.3): 

JJy - lJx = iJz 
lJ= - JJ, = il, 

JJ, - JJ= = il, 

or in a condensed formal way 

J x J = iJ. 

(C.S) 

(C.6) 

In order that J be an observable it must be Hermitian (see eg. (A.6». In 
general one introduces the Hermitian conjugate Bt of an operator B 
where Bt is defined by the process of taking the complex conjugate of a 
matrix element: 

futBtUj dr = [fU;BUi dr ]*, (C.7) 

that is, the matrix element of Bt is the complex conjugate of the transpose 
of the matrix element ofB. For a Hermitian operator Bt = B. We mention 
this because we find it convenient to use two non-Hermitian operators 

J + = l, + il, 

and 

J_=l,-il, 

to replace J x and J)'. These have the property 

Jt = J 

Jt = J+ 

and the commutation relations (C.S) become 

J +J _ - J _J + = 2Jz 
J+Jz-lJ+ = -J+ 

J_Jz-JJ- =J_. 

(C.8) 

(C.9) 

(C.1O) 

We also need to introduce the operator J2 = J . J which represents the 
square of the magnitude of the angular momentum J. J2 commutes with 
all the components of J : 

(C.ll) 

Making use of (C.8) we find that 

(C.12) 
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from which, with eq. (C.IO), we can derive the useful results 

Jj + = J2 - Jz(Jz + I) 

J.J_ = J2 - Jz(Jz - I). (C.13) 

C.3. The eigenvalues of Y and J, 

Because the components of J do not commute we cannot find a function 
which is a simultaneous eigenfunction of all the components of J (that is, 
we cannot simultaneously diagonalize all the components of J): see section 
A.6 of appendix A. However, J2 does commute with J, so we can simul­
taneously diagonalize J 2 and one component of J: by convention we 
always consider the component Jz. 

Let the eigenfunctions of J2 and Jz be la, M) with eigenvalues a and M, 
I.e., 

J 2 1a, M) = a la, M), 

Jzla, M) = Mia, M). 

We choose the states so that they are orthonormal, i.e., 

(a', M' I a, M) = (juu·(jMM'· 

(C.14) 

(C.15) 

To set limits on the values of a and M we consider the new state J + ia, M). 
Its norm is 

(a, MI J:J. la, M) = (a, MI J_J. la, M). 

But it is a fundamental theorem that the norm of a state must be greater 
than or equal to zero: 

Likewise 

It follows that 

and, hence 

(a, MI J +J _ la, M) ~ O. 

a - M(M + I) ~ 0, 

a - M(M - I) ~ 0, 

Returning to the state J + la, M) we find 

JJ .Ia, M) = (M + I)J +Ia, M), 

and 

(C.16) 

(C.17) 

(C.18) 

(C.19) 

(C.20) 
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Equations (C.20) show that the state 1 + la, M) is an eigenfunction of J2 
and of l z , differing from la, M) in that the eigenvalue of l z is greater by 
one while the eigenvalue of J2 is the same. Repeated operation with 1+ 
yields a series of states all with the same eigenvalue a but with values of M 
increasing by one each time. Similarly repeated operation with 1_ gives 
values of M decreasing by one each time. For this reason 1 + and 1_ are 
called raising and lowering operators. 

But the generation of new eigenfunctions cannot go on for ever without 
violating (C. 19). Therefore, there must be states which satisfy 

It then follows that 

Hence 

1 +Ia, Mmax) = 0, 
1_la, Mmin ) = O. 

a - Mmax(Mmax + I) = 0, 

a - Mmin(Mmin - I) = O. 

Mmax = -A1min · 

(C.21) 

(C.22) 

(C.23) 

But the values of M go in steps of one, so M max - Mmin is an integer. 
Hence, 2Mmax and 2Mmin are each integers, so all the M are either inteqer 
or half-integer. We now call the maximum value of M by the name 1, and 
from (C.22) we can write 

a = 1(1 + I). (C.24) 

We use 1 from now on, instead of a, as one of the labels for the eigen­
functions and we write them 11, M). 1 is an integer or half-integer greater 
than or equal to zero. M takes values between 1 and - 1 differing by unity 
and is an integer or half-integer depending on which 1 itself is. We rewrite 
eq. (C.14) in the form 

J 2 11, M) = 1(1 + 1)11, M), 

lzll, M) = Mil, M). 

C.4. Matrix elements of the angular momentum operators 

First of all, 

(C.2S) 

(C.26) 

Now we consider the matrix elements of 1+ and 1 _. In view of eq. (C.20) 
we can write 

(C.27) 

where eM + 1 is a constant to be determined. Taking the norm of both sides 
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of eq. (C.27), we have 

(1, MI J_J+ IJ, M) = cZt+ ICM+ 1(1, M + 11 J, M + 1) . 

= cZt+ ICM+ 1 (C28) 

since IJ, M + 1) is normalized. But 

(1, MIJj+ IJ, M) = J(J + 1) - M(M + 1), (C29) 

so 

(C30) 

Choosing the phase eiO = + 1, and sticking to this convention throughout, 
we have 

J+iJ, M) = [J(J + I) - M(M + 1)]'/2iJ, M + I), (C31) 

or 

(1, M + 11 J + IJ, M) = [J(J + I) - M(M + 1)]1/2. (C32) 

Similarly, 

(1, M - II J_ IJ, M) = [J(J + 1) - M(M - 1)]1/2. (C33) 

These formulae are easy to remember because, in (C32), J + raises M to 
M + 1, and on the right-hand side the product M(M + 1) appears. All 
other matrix elements of J + and J _ vanish, and in particular the matrix 
elements of J + are diagonal in J. 

C.5. Two commuting angular momenta 

If we introduce another angular momentum 1 all of whose components 
commute with all the components of J, then it is possible to have a func­
tion II, J, M I , M J) which is a simultaneous eigenfunction of 12, J2, I z, 
and Jz: 

121/, J, M I , M j ) = I(I + 1)11, J, M I , M J), 

J 2 1/, J, Mf, M j ) = J(J + 1)11, J, M I , M j ), 

IzII, J, M I , M J) = MIll, J, M I , M J), 

JzII, J, M I , M J) = MJII, J, M I , M J). 

An operator which one comes across frequently is 1 . J: 

1 . J = IzJz + IJx + IyJy 

= IzJz + ~(I+J_ + LJ+). 

(C34) 

(C35) 

Its matrix elements are diagonal in I and J. In the representation of 
eq. (C34) IzJz has only matrix elements diagonal in MI and M J: 

(I, M I , J, M;I IJz II, M I , J, M j ) = MIMjbMiMJbMJMJ. (C36) 
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The only non-vanishing matrix element of 1+1_ is 

0, M[ + 1,1, M J - 111+1_11, M[, 1, M J) = 

[I(I + I) - MI(MI + 1)]1/2[1(1 + I) - MiMJ - 1)]12. (C37) 

Similarly 

<I, MI - I, J, M J + II LJ+ II, M I , J, M J) = 
[I(I + I) - MI(MI - 1)]1/2[1(1 + I) - MiMJ + 1)]1/2. (C38) 

Notice that 1+1_ does not commute with Iz or 1z separately so it does not 
have matrix elements diagonal in MI and M J • But 1+1_ does commute 
with I z + 1z which has the eigenvalue M = MI + M J, so M is conserved 
in eq. (C37), that is, in the matrix element 

(MI + I) + (MJ - I) = MI + M J = M. 

Problems on Appendix C 

Some of the statements, given without proof in appendix C, depend on 
what has gone before. It is therefore advisable to work through the 
equations as follows: 

I. Derive eq. (C3). Use (C2). 
2. Show that (C4) satisfies (C3). First show that [I(i), IU)] = 0 if 

i¥}. 
3. Derive eq. (CIO) from (C5). 
4. Verify (C I I). 
5. Derive (C.I 3). 
6. Derive eq. (CI8). 
7. Derive (CI9). 
8. Derive (C20). 
9. Derive (C22) and (C23). Why must we exclude Mmax - M min + 

I = O? 
10. Prove (C26). 
II. Prove (C29). 
12. Derive (C35). 
13. Show that 1+1 _ commutes with (Iz + 1z). Use (CIO). 
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Appendix 0 
The ground levels and their electron configurations for neutral atoms. (The number of 
electrons in each shell is specified in the table.) 

~ 
Is 2s 2p 3s 3p 3d 4s 4p 4d 4/ Ground 

level 

IH I 2S'/2 
2 He 2 'So 

3 Li 

\ 
I 2S 1!2 

4 Be 2 'So 
5B 2 I 2P"2 
6C 

I f\ 2 2 3po 
7N 2 3 4S 3!2 
80 2 4 3P2 
9F 2 5 2P312 

10 Ne 2 6 'So 

II Na \ 1\ I 2S'I2 
12 Mg 2 'So 
13 Al 2 I 2P1!2 
14 Si full full 2 2 3P

O 
15 P 

\ \ 
2 3 4S3I2 

16 S 2 4 3P2 
17 CI 2 5 2P

3/2 

18 Ar 2 6 'So 

19 K 

i\ 1\ 
2 6 I 2S'I2 

20 Ca 2 6 2 'So 

21 Sc \ \ 
2 6 I 2 2D312 

22 Ti 2 6 2 2 3F2 
23 V 2 6 3 2 4F312 
24 Cr 2 6 5 I 7S3 
25 Mn 2 6 5 2 6S S!2 
26 Fe 2 6 6 2 sD4 
27 Co full fuE 2 6 7 2 4F9/2 

28 Ni \ \ 2 6 8 2 3F4 

29 Cu 2 6 10 I 2S'!2 
30 Zn 2 6 10 2 'So 
31 Ga 2 6 10 2 I 2P'I2 
32 Ge 2 6 10 2 2 3P

O 
33 As 2 6 10 2 3 4S 312 
34 Se 2 6 10 2 4 3P2 
35 Br 2 6 10 2 5 lP312 
36 Kr 2 6 10 2 6 'So 
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~ 
Is 2s,p 3s,p, d 4s 4p 4d 4f 5s 5p 5d 5f 5g Ground 

level 

37 Rb 

j 
2 6 1 2S 1I2 

38 Sr 1 2 6 2 ISO 

39 Y \ 

\1 \1 
2 6 1 2 2D3/2 

40 Zr 2 6 2 2 3F2 
41 Nb 2 6 4 1 6D 1I2 
42 Mo 2 6 5 I 7S

3 

43 Tc 2 6 5 2 6S S / 2 
44 Ru 2 6 7 I sFs 
45 Rh full 2 6 8 I 4F9/2 
46 Pd \ \ 1 2 6 10 ISO 

47 Ag 

\ 
2 6 10 I 2S 1/2 

48 Cd 2 6 10 2 ISO 
49 In 2 6 10 2 I 2P 1/ 2 
50 Sn 2 6 10 2 2 3PO 
51 Sb 2 6 10 2 3 'S3/2 
52 Te 2 6 10 2 4 3P2 
53 I 2 6 10 2 5 2P3!2 
54 Xe 2 6 10 2 6 ISO 

216 



Appendix 0 

~ 
Is 2s, p 3s,p, d 4s 4p 4d 4f 5s 5p 5d 5f 5g 6s Ground 

level 

55 Cs 2 6 10 2 6 I lS'/l 

56 Ba \ 2 6 10 2 6 2 'So 

57 La \ 2 6 10 2 6 I 2 lD3/2 

58 Ce \ 2 6 10 mixed configurations J=4 
59 Pr 2 6 IO 3 2 6 2 41 9/2 
60Nd 2 6 IO 4 2 6 2 sI4 
61 Pm 2 6 IO 5 2 6 2 6H s/l 

62 Sm 2 6 IO 6 2 6 2 7Fo 
63 Eu 2 6 IO 7 2 6 2 8S7/1 

64Gd 2 6 10 7 2 6 I 2 9D2 
65 Tb 2 6 10 8 2 6 I 2 8G!3/2 
66 Dy 2 6 10 IO 2 6 2 sI 8 
67 Ho 2 6 10 11 2 6 2 41 'S/2 
68 Er 2 6 10 12 2 6 2 3H6 
69Tm \ \ 2 6 10 13 2 6 2 2F7/2 
70 Yb full full full 2 

\ 
6 10 14 2 6 2 'So 

7I Lu 2 6 1 2 2D3/2 
72 Hf 2 6 2 2 3F2 
73 Ta 2 6 3 2 4F3/2 
74 W 2 6 4 2 sDo 
75 Re 2 6 5 2 6S St2 
76 Os 2 6 6 2 sD4 
77 Ir 2 6 7 2 4F9/2 

78 Pt full 2 6 9 I 3D3 

79 Au \ 2 6 10 I 2S'!2 
80 Hg 2 6 10 2 'So 
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~ 
Is 2s,p 3s, p, d 4s,p, d,f 5s 5p 5d 5f 5g 6s 6p 6d 7s Ground 

level 

81 TI 

1\ 
\Ull \Ull \Ull 

2 6 10 2 I 2P I12 
82 Pb 2 6 10 2 2 3PO 
83 Bi f\ 2 6 10 2 3 4S3/2 
84 Po 

\ \ \ 
2 6 10 2 4 3P2 

85 At 2 6 10 2 5 2P3I2 
86 Rn 2 6 10 2 6 ISO 

87 Fr 

1\ 1\ 
2 6 10 2 6 I I 2S li2 

88 Ra \ 2 6 10 2 6 2 i ISO 

89 Ac 

\ \ \ 
2 6 10 2 6 I 2 203/2 

90 Th 2 6 10 2 6 2 2 3F2 
91 Pa 2 6 10 2 2 6 I 2 4KIli2 

92U 2 6 10 3 2 6 I 2 sL
6 

93 Np 2 6 10 4 2 6 I 2 6L 11 / 2 

94 Pu 
fJ" 

2 6 10 6 2 6 2 7Fo 
95 Am full full full 2 6 10 7 2 6 2 8S7/2 
96Cm 2 6 10 7 2 6 I 2 902 
97 Bk 2 6 10 8? 2 6 I? 2 8G IS /2 ? 
98 Cf 2 6 10 IO? 2 6 2 51 8 ? 
99 E 2 6 10 II 2 6 2 41 15 '2 

100 Fm 2 6 10 12 2 6 2 3H6 
101 Mv 2 6 10 13 2 6 2 IF712 

102 No 2 6 10 14 2 6 2 ISO 
103 Lw 2 6 10 14 2 6 I 2 203/2 

218 



Appendix E 

Units 

This book is written in SI units and, where appropriate, the 'pet' units 
of the specialist have been used, e.g., A and cm - 1 (optical spectroscopy), 
mK (high-resolution optical spectroscopy), MHz or Hz (radiofrequency 
spectroscopy). One should be able to translate these units into C.g.s. 
units, for it is one of the purposes of the book to introduce the reader to 
a vast body of literature which is written in a language of traditional units 
and special notations. 

But the matter does not end here, for there is another set of units, to be 
found particularly in theoretical work, which is much more appropriate 
to the subject of atomic structure. The units are called atomic units (a.u.). 
and they are usually based on the non-rationalized c.g.s. system in which, 
on the one hand the quantities 4m,o and /lo/4n do not appear, but on the 
other hand the speed of light is involved in the conversion from electro­
magnetic to electrostatic C.g.s. units. In the system of atomic units certain 
dimensional constants are set equal to unity so that they conveniently 
disappear from many formulae. These constants are 

Rest mass of the electron 

mo == I a.u. of mass, 

Magnitude of the charge of the electron 

e == I a.u. of charge, 

Radius of the first Bohr orbit 

h2 

ao = ~-2 == I a.u. of length. 
moe 

(E.1) 

(E.2) 

(E.3) 

(Note that the formulae in this appendix are written in c.g.S. form.) 
Derived from these we have 

h = (moe2ao)!!2 = 1 a.u. of action (or of angular momentum). (E.4) 
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The dimensionless fine-structure constant, which is of central importance 
in electromagnetic interactions, is 

(E.S) 

so that the speed of light in atomic units is 

c = );-1:::::; l37.a.u. of speed. (E.6) 

Thus I a.u. of speed is );c, which is the speed of the electron in the first 
Bohr orbit of hydrogen according to the Bohr model. The unit of time is 
the time taken to travel a distance a o with speed :xc: 

a o 11 3 

To == - = --4 = I a.u. of time. 
);C moe 

(E.7) 

The unit of energy is chosen to be 

e 2;ao = I a.u. of energy, (E.8) 

so the ionization energy of hydrogen, hcR y , is ~ a.u. (Notice that this 
choice of energy unit is not quite universal, for some authors have used 
~e2/ao as the unit.) 

One of the consequences of using atomic units is that Schrodinger·s 
equation describing the gross structure of hydrogen reads 

(E.9) 

in which the constants Ii, rna, and e2 no longer appear. Notice that atomic 
units are not the same as relativistic units, in which the rest energy of the 
electron, m oc2

, is set equal to I. In atomic units this energy is of magnitude 
-2 :x . 
We list below, in atomic, c.g.s. and SI units, accurate values of some 

fundamental constants (table E.l) and approximate values of some further 
quantities derived from the fundamental constants (table E.2). 
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N 
N ... 

Table E.1 

Accurate values of some physical constants in atomic. C.g.s .. and SI units. The numbers in parentheses are the standard-deviation uncertainties in the last 
digits of each quoted value. These values are selected from table 33.1 of the paper by E. R. Cohen and B. N. Taylor. J. Phr.l. ChOI1. Ret: D(/I(/ 2.663. 1973. 
I n column I the quantities in square brackets multiply the C.g.s. expressions to convert them into SI expressions (f;" = 107 /( 4rr(2 ) ~ 8·85 x 10 12 F m '). 

Quantity 

Electron rest mass 
Magnitude of electron charge 

Planck's constant 

Fine-structure constant 

e
2 

[ I ] he 4rrEo 

Speed of light 
Electron charge to mass ratio 

Ratio of proton mass to electron mass 
Radius of first Bohr orbit 

~[4rrEoJ moe 

Rydberg constant 

me
4 

[ I J 
4rrh 3c 4rrEo 

Bohr magneton 
eh 

2m c [c] 
0 

Electron magnetic moment 
in Bohr magnetons 

Symbol 

mo 
e 

h 
h 

(1 

(1-1 

c 
elmo 

Mlmo 

aD 

R", 

fls 

fl,/lls 

Value in a.u. 

2rr 
I 

7,2973506(60) X 10-3 

137,03604(11 ) 
(1-1 

1836,15152(70) 

a 
411: 

(1/2 

1·00 I 1596567(35) 

Value in: c.g.s. units Sf units 

9'109534(47) 10- 28 g 10- 31 kg 
1·6021892( 46) 10- 20 e.m.u. 10- 19 C 
4·803242( 14) 10- 10 e.s.u. 
6'626176(36) 10 - 27 erg s 1O- 34 1s 
1,0545887(57) 10- 27 erg s 1O- 34 1s 

7 2973506( 60) 10- 3 10- 3 

I 37·03604( II) 100 100 

2·997924580( 12) IO lo cms- 1 108 ms- 1 

1,7588047(49) 107 e.m.u. g- 1 lOll C kg- I 

5,272764(15) 10 17 e.s.u. g-1 

1836'15152(70) 100 100 

5,2917706(44) 10- 9 cm 10- 11 m 

1,097373177(83) 10 5 cm- I 107 m- I 

9,274078(36) 10 - 2 I erg G - 1 1O- 24 1T- 1 

10011596567(35) 100 100 



N 
N 

Table E.2 
N 

Approximate values of some supplementary physical quantities in atomic, c.g.S., and SI units. 

Quantity Value in a.u. Value in: c.g.s. units S1 units 

Atomic unit of energy 

~[~-J = f!1~[ __ ~ J = 2hcR 4·36 10- 11 erg 1O- 18 J 
aD 4rrBo r, 4rrf.o oc 

27-2 eV eV 

Atomic unit of time 

r 0 = ....Q = ~- 4nBo a r,' [ J 
ac nloe4 2-42 10" 17 S IO-"s 

Rest energy of electron 

moc' ex-' 8·19 10- 7 erg 10- 14 J 
5·11 105 eV 105 eV 

Atomic unit of electric dipole moment 

r,' 
eao = -- [4nBoJ 

moe 2·54 10- 18 e.s.u. cm 

8·48 1O-,oCm 
Bohr magneton in frequency units 

I1B/h ex/4n lAOO Mc/s G- 1 104 MHz T- I 

Interaction energy (fine structure) 

, e' [ 1 ] 
ex Go 4rrco 

ex' 2·32 10- 15 erg 10-" J 

a' e' [ 1 ] 
II Go 4rr£; ex' /2rr 3·5 105 Mc/s 105 MHz 

ex' e' [ 1 ] he a~ 4rrl:o ex'/2n 1·\7 10 1 em- I 10' m- I 



N 
N 
W 

Magnetic field corresponding to an energy a2 e2 lao 

a
2 

e
2 

[ I ] e [ I ] 411 [ I ] 
B = ;;;; (z"o 4iU;'~ = 2a ao' 4rrf.oc = (I) 4rr~;oc2 

Interaction energy (hyperfine structure) 

rnJ)'y2 ~ [ 1_] = 4 IIBI~~ [~ l 
M ao 4rr£() an.l 4m;oc2

. 

- 4 I~~II~ [ ~ l 
- haa.1 4rrl:oc 2 

- 4 PBI~ [. 1 " ] 
- heao J 4m:nc2 

. , . m ") e2 

MagnetIC field correspondmg to an energy J a" 
, a o 

B - 4 liN [" I l 
- " J a o' 47[l:oc-

2a 2·5 10' G jOlT 

Ino 2 
MiX 126 10- 18 erg 10 - 25 J 

rna a2 

1·9 10 2 Mcls 102 MHz 
M2rr 

rna a] 
6-4 10-.1 cm - I 10- 1 m- I 

M 2IT 
6·4 mK 

2 rna 
M a 1·36 10 2 G 10- 2 T 





Index 

Absorption, 32-36 
coefficient, 52 

Alkali atoms, 105-108, 131 -133 
Angular momentum, 120-122, 166 

addition of, 66-68 
orbital, 23-25 
spin, 58-59 
theory, 209-214 

Anomalous g-value of electron, 70, 173 
Anomalous Zeeman effect, 58,151 
A rc spectrum, 108n 
Atomic units, 219-223 

Balmer series, 27 
Binding energy, 2, 5 
Bohr-Coster diagram, 106 
Bohr frequency condition, 1,27,32,41 
Bohr magneton, definition, 6,221 
Bohr radius, 4,22,221 
Bohr-W eisskopf effect, 178 
Born, 10 
Branching rules, 117, 144 
Breit-Rabi formula, 193 

Central field, 5,16,71,97-99,105 
Centrifugal potential, 19, 104 
Charge, effective, 94,102,106,132,177 
Classical oscillator, 45-46, 52, 165, 167 
Clebsch-Gordan coefficient, 68 
Closed shell, 92, Ill, 144 
Combination principle, Rydberg-Ritz, 2, 

137 
Commutation, 13,25,112 

rules, 29, 209-210 
orbital angular momentum, 24, 66 
spin, 59, 72 

Complete set, 202 
Complex spectra, 2, 5 

Configuration, definition, 5, 99 
mixing, 5,92, Ill, 113, 151, 174 

Configurations, table of, 215-218 
Conjugate variables, 13, 25 
Contact term, 172, 176 
Continuum, 26, 27 
Correspondence principle, 22, 25, 74, 

165 
Coulomb field, 9,28,129,132 
Coupling, /J, 169-170, 179, 182, 187 

intermediate, 143 
j-j, 140-143, 155, 166 
J-/, 144 
LS, IIHI4, 146-149, 179 

Damping, 44,52 
Darwin term, 63, 73 
de Broglie, II 
Degeneracy, definition, 28, 202 
D-lines, 58,151,157,167 
Determinantal functions, 90-91, 114, 

119-122,130,144 
Deuterium, 27, 69 
Diamagnetism, 166 
Dirac, 10, 12, 36, 59 
Direct integral, 78, 83, 115 
Doublet structure, 58, 132-133, 177 

Effective charge, 94, 102, 106, 132, 177 
Effective operator, 74, 127, 148, 170, 182 
Effective quantum number, 107 
Eigenfunctions, 14,202 

simultaneous, 24,68,87,205 
symmetry of, 80 -82, 88 

Einstein, II 
A- and B-coefficients, 32-36, 41,43, 

45, 53 
Electric dipole radiation, 42-48, 81, 134 
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Electric quadrupole radiation, 48-51 
Electron, anomalous g-value, 69, 173 

equivalent, 90, 91,119 
spin, 57-59 
temperature, 46 

Electrostatic interaction, 4-5, 7, 9, 16, 
75-89,97. 14l 180 

Emission, induced. 32-36. 190 
spontaneous. 32-36, 69. 190 

Equilibrium, thermal, 8, 34 
Equivalent electrons, 90. 91. 119 
Equivalent width. 53 
Exchange degeneracy. 75-81 
Exchange integral, 78, 83, 86,115 
Exchange operator. 80, 86, 87 
Exclusion principle, 86-89, 10 1, 119 
Expectation value, definition. 14.202 

Fermi contact term, 172-176 
Fermi-Segre formula. 177 
Field effect in isotope shift. 196 
Fine structure, 5. 7 

in alkalis. 131-133. 177 
constant, 4. 51. 61. 63. 70, 221 
in helium. 133 
in hydrogen. 57-73 
in LS coupling. 124131 

Forbidden transitions, 3. 49 
Fourier transform, 12 
rsum rule. 46. 53 
.rvalue.45 

g-factor, Lande, 149 
nuclear. 170, 187 
orbital. 58. 146 
spin, 59. 70. 146- 151 

g-sum rule, 166 
Ground states. 9193 

of the elements. 215- 218 

Half-filled shell, 124. 131, 145 
Hartree-Fock method, 100 
Hartree method, 99 
Heisenberg Uncertainty Principle, 4. 13. 

77 
Helium. 74-86 

excited states. 83- 86 
fine structure. 133 
ground state, 81 83 

Hermitian operator, 25. 41. 42.167.203. 
210 

Hund's rule. 124 
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Index 

Hydrogen, eigenfunctions, 18, 20, 21, 65 
fine structure. 57-73 
gross structure, 9. 15-23.26-29 
hyperfine structure. 173 
Lamb shift, 69-71, 158 

Hyperfine structure. 6. 7, 168-194 
anomaly, 178 
magnetic dipole. 169-174 
electric quadrupole, 180-186 

Identity of particles, 76-77 
JJcoupling, 169-170.179, 182,187 
Intensity. 48 

ratios in fine structure, 134-140 
in hyperfine structure. 175 
in Zeeman effect, 160-166 

sum rules for. 164. 175 
Intercombination lines. 135 
Intermediate coupling. 143 
Interval rule. in fine structure, 129, 133, 

137 
in hyperfine structure, 175, 176, 185 

Inverted structure. 128 
Ionization limit. 2. 7 

potential, 27. 94. 108 
Iso-electronic sequence. 65. 108 
Isotope shift. 194-199 

field effect. 196 
normal mass shift. 28, 195 
specific mass shift, 195 
volume effect. 197 

h coupling. 140-143, 155, 166 
J-/ coupling, 144 

Kepler orbit, 28 

Laguerre polynomial, 19 
Lamb shift, 69-71,158 
Lande formula, 132. 145. 177 
Lande g-factor, 149 
Lanthanum, 175 
Legendre polynomial. 17. 48. 115. 181 
Level. 5. 128 
Lifetime. 33. 43. 51. 54 
Linear Stark effect, 158 -160.167 
Line strength. 44-46 
Lorentz triplet. 150. 167 
LScoupling, 111-114.146149, 179 
Lyman series. 27 

Magnetic dipole radiation. 4851 
Manganese, 184-186 



Index 

Mass, effect in isotope shift, 28,194 
reduced, 16,20,27,29,195 

Metastable states, 89, 94 
Mixing, of configurations, 5, 92, III, 

113,151,174 
of states, 42 

Moment, electric dipole, 6, 50, 156 
electric quadrupole, atomic, 50 

nuclear, 182-185 
magnetic dipole, atomic, 6, 50, 57 

nuclear, 169-174, 177 
Multiplicity, 67 
Muonic atom, 30, 199 

Natural excitation, 46 
Nodal surfaces, 20 
Normal Zeeman effect, 58,150,153 
Nuclear magneton, 6, 170 
Nuclear radius, 197, 198 
Nuclear spin, 168, 174-176, 189 

Observable, 14,202 
Operator, 10-13 

effecti ve, 74, 127, 148, 170, 182 
exchange, 80, 86, 87 
Hermitian, 25, 41, 42,167,203,210 
Pauli,72 
raising and lowering, 121, 162 
single-particle, 110, 121, 144 
tensor, 134, 161, 182 
two-particle, III 
vector, 24, 126, 170 

Orbit-orbit interaction, 75, 133 
Oscillator strength, 45, 51 

Parent term, 117, 144 
Parity, definition, 26 

in radiation theory, 47, 49,135 
of states, 28, 92, 113, 155 

Paschen-Back effect, 153 
Pauli exclusion principle, 86-89, 101, 

119 
Pauli operators, 72 
Penetrating orbits, 92, 106 
Periodic system, 89-93, 215-218 
Perturbation theory, summary, 206-208 
Polarizability, 156 
Polarization, 38, 39, 42 

rules. 47 
in Zeeman effect, 160-164, 190 

Precession, 67, 125, 147 
Principal quantum number, 3, 20 

Probability density, 10, 14,20 
in hyperfine structure, 172-173 
in isotope shift, 196-198 

Quadratic Stark effect, 155-158 
Quadrupole moment, 50, 182-185 
Quadrupole radiation, 48-51,145 
Quantum defect, 107 

Rabi flopping frequency, 55 
Rabi formula, 54 
Radiation, 32-56 

black body, 34 
electric dipole, 42-48, 81, 134 
electric quadrupole, 48-51,145 
magnetic dipole, 48-51 

Rare earth, 2, 92 
Rare gas, 91, 92 
Rate equation, 40 
Relativistic effects, 4, 5, 12, 75 

in hydrogen, 59-63, 71 
in hyperfine structure, 174, 178 

Rotating wave approximation, 39 
Russell-Saunders coupling, see LS 

coupling 
Rydberg constant, 21,22,221 
Rydberg formula, 107 
Rydberg-Ritz combination principle, 2, 

137 

Screening effects, 30, 84, 95, 97, 102, 106, 
177 

Secular equation, 79, 143, 154, 158, 193 
Selection rules, 3, 26, 38, 134 

for F, 175, 190 
for ], 64, 72, 135 
for I, 46-48, 71, 135, 158 
for L, 135 
for M F , 190 
for M I , 191 
for M J , 149, 163 
for mh 46-48, 71 
for M L , 153 
for Ms, 153 
for S, 88, 135 

Self-consistent field, 99 
Shell,5,91 

closed, 92, 112, 144 
half-filled, 124, 131, 145 

Silicon, 117-119, 122-124 
Simple spectra, 2, 5 
Single-particle, functions, 89, 115 

operators, 110, 121, 144 
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Slater determinant, 90 
Sodium, 105, 151, 157 
Space quantization, 24, 57, 58 
Spark spectrum, 108n 
Spherical harmonic, 17, 18, 24, 26, 30, 

181-182 
addition theorem, 181 

Spin-orbit interaction, 5, 74, 110- 112 
in alkalis, 132 
in helium, 133 
in hydrogen, 61 
inhcoupling, 141 
in LS coupling, 125-131 
in Zeeman effect, 152 

Spin-other-orbit interaction, 74, 133 
Spin-spin interaction, 75, 133, 145 
Stark effect, linear, 158-160, 167 

quadratic, 155-158 
State, 6, 149 
Statistical weight, 7, 139 
Sum-rule, 130, 164 

Ornstein-Burger-Dorgelo, 138 
Superposition principle, 10 

Tensor operator, 134, 161, 182 
Term, 2, 5,113,114 
Thomas-Fermi model, 101-105 
Thomas precession, 62 
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Tin, 142 
Transition elements, 92 
Transition probability, 36-42, 191 
Triangular condition, 116 
Tunnelling, 167 
Two-electron excitation, 83, 135, 199 
Two-electron operator, III 
Two-level atom, 54 

Uncertainty Principle, 4, 13, 76 

Variational method, 83, 94, 99 
Vector model, 24 

for one electron, 65-68 
for two electrons, 125-127 
in Zeeman effect, 147 

Vector operator, 24, 126, 170 
Vector potential, 14,37-40,49,51,163 

Wigner-Eckart theorem, 127n 

X-ray spectra, 106 
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normal, 58, 150, 153 





11111111111111111111111111 
9 780198 511564 


	Contents
	Chapter 9. Hyperfine Structure and Isotope Shift
	9.1. Magnetic dipole interaction
	9.2. Determination of nuclear spin from magnetic hyperfine structure
	9.3. Determination of 𝜇 from magnetic hyperfine structure
	9.4. Magnetic hyperfine structure in two-electron spectra
	9.5. Electric quadrupole interaction
	9.6. Zeeman effect of hyperfine structure
	9.7. Isotope shift


